
Using self-led Critical Friend topology based on P2P Chord algorithm
 for node localization within Cloud Communities

Stelios Sotiriadis1, Nik Bessis1,2, and Nick Antonopoulos1
1School of Computing & Maths, University of Derby, UK

2Department of Computer Science and Technology, University of Bedfordshire, United Kingdom
 stelios@sotiriadis.gr, (n.bessis, n.antonopoulos)@derby.ac.uk

Abstract — Resource provision within critical friend
environment take place on a demand fashion and it is based on
the aptitude of members to look across multiple locations for
resource discovery and allocation. A major concern of such
large scale and uncertain topology setting is the capability of
members (nodes) to efficiently search and locate neighbouring
participants. Here we adopt a Peer to Peer (P2P) approach in
which every node in the network acts alike and discovers
resources in a distributed coordination. More specifically, we
propose the use of Chord algorithms, as a distributed peer to
peer lookup protocol, put forward a new solution by assigning
keys to different nodes. By specifying the aspect in which keys
(data) are assigned to nodes, and how a node can determine the
value for a given key, the algorithm locates the node
responsible for that key. In the work herein we discuss a
notable case, namely how Chord algorithms as a distributed
P2P lookup protocol may determine provable solutions to the
problem of efficient large scale Grid and Cloud resource
localization. More specifically, the aforementioned proposal
deals with the load balancing, scalability and availability of
Grid and Cloud resources in a decentralized manner.

Keyword: Cloud Computing, Grid Computing, Self-led
Critical Friends community model, P2P searching protocols,
Chords algorithms

I. INTRODUCTION
Grid is defined as a coordinated endeavour of numerous

nodes, normally connected in random topologies, in order to
reach a common scientific or technical goal. Set of those
resources with common characteristics, such as familiar
administrative sharing rules and actions are referring as a
Virtual Organisation (VO). The VO is composed of a set of
entities (e.g., resources, services, and users) from different
autonomous domains collaborating in order to complete
some cross-organization cooperative tasks [12]. In parallel,
over the recent years, the notion of Clouds has proven to be a
successful commercialized model, which encompasses Grid
computing while moves it one step forward. By
incorporating Grid and Utility computing; Cloud aims to
eliminate the over-provisioning of resources and offers an on
demand resource synthesis environment.

Literature suggest that a Cloud needs thin nodes;
members which functionality depends profoundly on some
other administrative node to fulfil its traditional
computational role, as well as Grid and Utility computing (a
shared server usage cost) [1].However, the resource

capability of a single Cloud is generally limited, and some
applications often require various Cloud centres over Internet
to deliver services together. Current trends are tending to
shift Cloud functionality to a more decentralized manner.
This yields thin clients (in our case the nodes) to self-
directed behaviours which based upon their own perception
regarding to the whole knowledge domain. We call these
neighbouring of nodes as Critical Friends Community (CFC)
and each specific node as a Self-led Critical Friend (SCF)
[3]. Moreover SCF comprises the role of mediator in the
communication by reflecting inter-connections to any inter-
connected node. In this study we aim to utilize the
aforementioned CFC nodes and we deal with an efficient
resource discovery and provisioning algorithm of a Grid
environment (part of the Cloud) in which members will be
capable of performing self-sufficient actions and locate
neighbouring nodes more powerfully.

With the purpose of addressing the associated objectives,
we focus on the Cloud part and how the aforementioned goal
may be achieved using a P2P Chord algorithm. P2P systems
and applications are distributed environments of nodes
without a centralized control and hierarchical structure. Each
node performs and manages an action or functionality in
alike to all other nodes. By reviewing all the P2P features
such as redundant storage, permanence, selection of nearby
servers, anonymity, search, authentication, and hierarchical
naming [4], we conclude that the core operation among those
rich characteristics is the localization of nodes. For this
research study, the Chord algorithm is selected with the aim
to associate its specific functionality of the distributed hash
table’s in order to efficient lookup nodes. The distributed
hash table (DHT) puts forward a global view of data items
and consistently maps nodes and their data items into a
common address space. The great advantages of DHT are
that search queries for data items or nodes are routed via a
small and predetermined number of nodes to the target node.
It offers a load balancing mechanism with an equally
handling means among all nodes for retrieving their data.
Finally a DHT is robust against random failures [7].

In the next sections, we discuss the motivation of the
study (Section 2), and definition of similar technologies
(Section 3). The rest of the paper outlines the Critical Friends
P2P Chord algorithm (Section 4, 5) as well an applicable
searching Chord protocol (Section 6). At last, we conclude
with the future work section and the proposed challenges
part (Section 7, 8).

2011 International Conference on Complex, Intelligent, and Software Intensive Systems

978-0-7695-4373-4/11 $26.00 © 2011 IEEE

DOI 10.1109/CISIS.2011.80

490

II. STATE OF THE ART
During the last years, evolvement of Cloud has produced

various visions of their resource provision topology models.
A widely accepted vision is the cluster configuration of a
homogeneous workload of a node which is controlled by the
same local resource management system. Nowadays, a new
scheme gets the attention of the academic community; the
fully decentralized models which turn clusters of
collaborated enterprises into an efficient community of
cluster members. The major problem within such settings is
the resource discovery and scheduling of jobs to any linked
nodes. Their interactions are based upon their knowledge of
the domain. For that reason a solution of self-sufficient
member may be a personalized profile of internal data.
Nodes snapshot profile may include: known and trusted
nodes addresses, hardware and software data, previous works
delegation records, policies, etc. Utilizing those profiles
joining to and leaving from the neighbouring of nodes
happens dynamically without affecting the whole
functionality of the VO domain. This may offer the prospects
towards to multi-institutional and unrestrained Clouds.

These multi-tenancy environments of nodes include
interconnections with other VOs participants by composing
an extended and scalable environment. [2, 3] discuss the
neighbouring of nodes as CFC composed by inter-
collaborated member knows as Self-led Critical Friend
(SCF). By acting as mediators in the communication they
reflect communication to any trusted node. On a similar vein,
[6] addressed a notable case namely how a SCFs topology
should be the means to realize interoperability and clarifies
that a grid community can communicate within their VOs,
thus they can form and manage their own perceptions about
neighbouring nodes based on previous interactions, such as
communication and delegation records. In other words, by
using SCF, the discovery of nodes is based on a nodes
internal knowledge independent of its VO domain.

The major problems that developers have to face within
such environments are issues related to scalability and
reliability. A decentralized distributed network of members
should not be affected by a single point of failure and
manage newly added and unused resources. In this work we
present a P2P case study of a Chord algorithm. Nodes in our
case contribute to the resource discovery as providers and
consumers of services by acting autonomously. Members of
the CFC collaborate directly with each other by utilizing
information of their snapshot profile by consistently hashing
addresses using a DHT model.

Several authors discus the great benefits of P2P in the
area of decentralization of resources. The first generation of
the P2P networks contains Napster, Gnutella and Freenet.
Napster allows nodes to communicate to each other though a
central index server which collects and sends queries directly
to clients (nodes). Despite the fact that Napster can ensure
the correct results, there is always the setback of a single
point failure (centralized management) as well as the
bottleneck of scalability. An alternative solution is the
Gnutella project which contains a decentralized search index
mode unlike to Napster. A node asks for data of interests

from neighbouring nodes and this process continues so on.
Although the major problem here is the flooding of queries,
search is actually distributed but not scalable. Finally,
Freenet which has been designed to provide anonymity uses
“smart queries” which data flows are in reverse path of
query. Despite Freenet offers a good performance within
small scale networks, communication messages must be
passed over many hops, in order to search through the
system to find the data. Each hop not only adds to the total
bandwidth load but also increases the time needed to perform
a query. Those drawbacks drive developers to the next
generation P2P settings by approaching them from a
different perspective by introducing DHT.

The second generation of P2P networks is the structured
architecture in which nodes are self-organised with load
balancing and fault tolerance mechanisms. Their main
functionality based on a DHT interface. A DHT stores key
and value pairs in which keys are similar to a file name and
values are the file content. Their main target is to efficiently
insert, lookup and delete key and value pairs. Each peer (in
our case node) stores a subset of key-value pairs. The core
operation is to find node responsible for that key by mapping
a key to node. Their great strengths are that keys are mapped
equally to nodes while each node maintains information for
only a small number of other nodes. The DHT is a generic
interface and there are several implementations of it. The
most well known are the Chord, Pastry, and Content
Addressable Networks (CAN) [5].

Chord organises nodes in a circle based on node
identifiers. The keys are assigned each time to the successor
node within the circle. Each node has a finger table with a
specific size using a finger table function. The searching
method lookups in finger table for the furthest node that
precedes the key. Pastry architecture is similar to Chord.
More specifically, Pastry considers network locality to
minimize hops messages travel. The new nodes need to
know a neighbouring node to achieve locality. Finally CAN
architectural design is “a virtual multi-
dimensional Cartesian coordinate space, a type of overlay
network, on a multi-torus” [9]. The nodes within the space
are identified with coordinates. “The entire coordinate space
is dynamically partitioned among all the nodes in the system
such that every node possesses at least one distinct zone
within the overall space” [9].

While there is some scepticism about the potentials of
P2P networks not only as a file sharing mechanism but also
as a powerful model in several computing areas (e.g. Cloud
computing), we believe that their rapid wide-spread
deployment of unstructured P2P networks may offer
significant advantages. In this study we use the Chord
algorithm method in order to structure a specific VO, and we
deal with CFC nodes localization. By describing their
functionality we aim to discuss a large scale combinatorial
search with high probability of finding accurate solutions.

III. THE CHORD P2P ALGORITHM
Chord is designed to offer high flexibility while may be

implemented by general purpose systems [7]. For achieving
resource localization it uses a consistent hashing distributed

491

lookup system [7] for referring keys to nodes. The consistent
hashing function assigns each node and keys an identifier
using Secure Hashing Standard (SHA-1) base hash function.
By providing a unique mapping among nodes and an
identifier space, each node is recognized by an IP address
and a port number (Chord identifier) which is hashed to a
unique identifier. The Chord architecture includes the Chord
as the means to map identifiers to nodes and the DHT that
associates nodes identifiers to values.

Nodes are placed in particular positions within a Ring
(Chord). Equally the nodes pair keys and values are placed in
the same Chord. In order to implement the hash function,
peers contain an m-bit identifier for both nodes and keys.
Each key has a successor and a predecessor. The m-bit
identifiers are stored within an m-entry routing table namely
as the finger table. As m we denote a sufficient big number
that make collisions improbable. This table stores
information about other nodes participating in the
neighbouring (Each table record consists of a node identifier
and a network address). Together key identifiers: SHA-
1(key) and node identifier: SHA-1(IP address) are uniformly
distributed within the same space.

Nodes’ identifiers are arranged in the Chord according to
the function mod2m. The successor of a node called
successor (k) and is the first node whose identifier is greater
of the k in the identifier space. The theorem of Chord
algorithm is that for or any set of nodes n and keys k with
high probability:

• Each node is responsible for at most (1+e)k/n node
keys.

• When (n+1)st node joins or leaves the domain the
responsibility for O(k/n) keys changes to other
nodes.

• Each node finger table holds unique m entries (the
number of bits in identifier) in the finger table up to
the number given by the function O(log n).

• The ith entry in the table at a node n contains the
identity of the first node s that succeeds n by at least
2i-1 on the identifier circle. So, the succesor s =
successor(n+2i-1).

Figure 1 illustrates the successor discovery algorithm as
discussed previously.

Figure 1: Finding nodes’ successor

In the above example finger tables shows the successors
of nodes in which for node 0 are s1node0= 0+20=1, s2node0=
0+20=1 etc. Finally, following this procedure Chord nodes
identify their successors and predecessors.

IV. THE CHORD CLOUD COMMUNITY PROTOCOL
The Chord Cloud Community protocol described below

utilizes the Chord P2P algorithm in order to achieve the
following objectives:

• Create the first Chord Ring topology utilizing the
initial VO members. The system uses an initial
bootstrap node.

• Hashing the metadata snapshot profile information,
the IP address and Port as also the physical resources
of node.

• Insert a new node to the Chord which allocates a
specific position.

• Insert a new key with snapshot profile within the
Chord.

• Delete an existing node in the case of
communication failures.

• Delete an existing key (snapshot profile).

• Search for a specific or a set of keys (snapshot
profiles).

 In the next sections we describe the aforementioned
objectives from the CFC perspective. We assume that
different VOs may cooperate with each other in order to
achieve an extended environment. As consequent we
originally created a Bootstrap Chord Ring (BCR) in which
the initial nodes (already existed) are registered and take
their places within the Chord.

Starting from scratch, nodes belonging to several VOs
are scheduled to be placed in the ring using the BCR
functionality. The m-bit identifier for each node is generated
by using a SHA-1 function. The snapshot profile is hashing
as well as the node IP in order to create the key hash. Each
hash key placed at the appropriate location in the Chord. For
instance, a node with key 20 will be placed to a position with
key value equal or greater than 20. It should be mentioned
that, the SHA-1 creates m size hash keys with 160 bit, so it is
unlikely to have two equal identifiers of keys. Consistent
hashing places the nodes to a circle of modulo 2m. The key k
goes to the first node which key is equal or less, making this
node the successor of k, successor(k). In a clockwise
topology identifiers are placed precisely in the Chord as
numbers from 0 to 2m-1. Figure 2 demonstrates CFC VOs in
which members are allowed to be inter-connected with nodes
belonging to different VOs. Each member contains a
snapshot profile with useful information such as CPU power,
total memory, hard disk space and numbers and a number of
constraints regarding their VO (security, policies etc).

492

 Figure 2: The VO topology Figure 3: The Chord Ring Figure 4: The finger table Figure 5: Lookup for key 52

In our sample a VO1 contains 10 nodes and 5 keys are
stored within the Chord with information of snapshot
profiles. Each node is linked to a successor and predecessor
node. Figure 3 shows the topology of the Chord. As
illustrated above the successor of k10 is the N14, so the key
is stored to the node14. The same procedure happens with
keys k20, k29 goes to node 32, k38 to node N38 and k52 to
Node N56. A Chord load balancing mechanism ensures that
keys are spread equally to nodes. Each time a new key enter
to the Chord the (1+e)K/N where e=O(logN) function
ensures the highest number of keys that nodes are
responsible for.

Chord offers two lookup methods for searching specific
keys. The simple lookup protocol based upon the successor
functionality. So, when a node requests for a key asks its
successor which performs a serialized forward to the next
one and so on until the desired key found. Despite the fact
that this solution is provable to find the correct results, it is
time consuming [7]. For solving that, Chord offers a finger
table; a DHT which stores information for a specific number
of nodes. More specifically, each node n holds a DHT with
m records which is called finger table. The ith record of the
finger table contains the identifier of the first node s which is
the next one of node n at least 2i-1 positions in the circle. So
the successors are given by the function successor(n+2i-1),
where 1≤i≤m. This node is called the ith finger of node n.
Each record of the finger table contains the Chord identifier
and the IP address (with the port). So the next finger of node
n is the successor (next node) of n within the circle.

Figure 4 shows that the finger table values of node8. The
first finger of node8 is node 14 as N8+1 = (8+20)mod26 = 9
and the next are calculated evenly. This technique offers two
great advantages. Firstly each node contains a small number
of nodes which are located as nearest to the node as possible.
Secondly the key searched procedure works faster than
before as forwards passing from tables to tables. Figure 5
shows the lookup function for key 52. The node 8 searches
for the successor of key 52. The finger table first redirect to
node42 as 52 is greater than the last entry of the table. Then
node42 forwards search to node 51 as 42 is less or equal to
51. Finally 51 discovers that node 56 is the responsible node.

V. JOINING OF NEW NODES TO CHORD
Herein we discuss how Chord deals with new

connections and possible node failures. Before starting a key

search, nodes may change their status; therefore Chord must
ensure that successors are stored correctly. This comes up by
utilizing a stabilization protocol which runs periodically in
the background and refreshes information of the finger
tables. When a new node n is activated for first time, calls
either the join function, or the create function in order to
build a new Chord (using a bootstrap node). The join
function doesn’t update the rest of the nodes with
information of a new node which is about to join. In order to
achieve it the Chord uses the stabilization method which
essentially discovers the new nodes connected to the Chord.
Each time a node runs the stabilization function, decides
which the successor for the predecessor p is. This case could
happen when a new node p joins the Chord. Furthermore, the
stabilization function updates the successor of node n that n
is still active by giving the opportunity to store n as a
predecessor. Every node runs periodically the finger fix
function in order to make sure that records of the finger table
are updated. Using this method, a node initializes its finger
table as well as store new nodes. Additionally, a checking for
predecessor procedure should occur, which will verify
periodically that fingers to predecessors are the correct.

VI. SCFS CHORD SEARCHING PROTOCOL
This section introduces the Community Chord Protocol

which aims to incorporate different Cloud VOs to a single
domain. Essentially, using the Chord P2P protocol we
attempt to specify how to locate nodes, how to add new
nodes and how to recover from the failure or planned
departure of existing nodes. The general aim is to describe
the way in which a) VOs are generated to Chords and b) the
inter-collaboration model is transforming to inter-Chord
cooperation. Then we discuss in c) the procedure of joining
a new node (a CFC member) to the inter-Chord partnership
and d) how peers (nodes) search for specific information
(keys). Finally in e) we describe the node failures occasions.
The protocol is organised as follows:

A. The Chords Generation

Let us assume that a VOa contains i nodes which are able
to communicate with each other based upon their own
perceptions about their acting domain, so they form a
community. Each member of this community contains a
profile with data about neighbouring nodes (local IP address,

493

neighbouring addresses of previous job delegations, policies,
physical information etc.). The algorithm first transforms
their local IP address (and a port) to an m-bit identifier using
the SHA-1 hash function. The key for our search is the
desired physical resources. The algorithm places the nodes to
the Chord. For n number of VOs the algorithm generates n
number of Chords. At this time each node is assigned with a
finger table showing its successor nodes. This procedure is
demonstrated at Figure 6; nodes from VOs are placed Chord
Rings (Layer 1 to Layer 2)

B. The inter-collaborated VOs

In aforementioned sections we have discussed that CFC
members are actually links between different VOs in order to
extend their current boundaries. Let assume that among two
VOs called VOa and VOb, at least two nodes are existing
which are inter-connected forming a collaborative
environment. Their functionality is to perform one single
operation; they redirect communication to other members
belonging to the same VO. In other words, when a searching
for keys is initialized those members will pass queries to
their trusted peers. Those peers will not be aware of which
node requests for queries and in which VO this query has
been generated. We assume that VOa size is greater than VOb
size, so we place the inter-connected node of VOb to the VOa
Chord. At this time, we have two interconnected nodes. In
our sample the VOb node is placed at the Chorda and the
Chord joining procedure starts. This procedure is showing at
Figure 7 (see Layer 2).

C. Joining the Chord

The new node is added to the Chorda at a location according
to its m-bit identifier. After that, new nodes successors and
predecessors are considered. Affected nodes, runs
periodically the stabilization protocol in order to update
finger tables and successor protocols. It should be
mentioned, that the new position of the newly added node is
decided by the Chord. The new node now belongs to both
Chorda and Chordb so it is possible to redirect searching
queries to both VOs. This theorem is possible as Chords
theory confirm that if any sequence of join operations is
executed interleaved with stabilizations, then at some time
after the last join the successor pointers will form a cycle on
all nodes in the network [4]. The procedure is demonstrated
in Figure 7 (Layer3).

D. Searching for keys

We assume that a node from VOa searches for a specific key.
The node will forward requests to their Chord finger nodes
(nodes from finger table). This procedure will continue until
the desired key is found. During this procedure, the newly
added node-belonging to both Chorda and Chordb-may
forward requests to the incorporated Chords. With high
probability, the number of nodes that must be contacted to
find a successor in a N-node network is O(log N). The total
performance will not be affected, because the Chord theorem
suggests that if we take a stable network with N nodes with
correct finger pointers, and another set of up to N nodes joins
the network, and all successor pointers are correct, then

lookups will still take O(log N) time with high probability
[4].

Figure 6: CFC Chord protocol

E. Node failures

The key mechanism to deal with nodes failures is to
maintain correct successor pointers. To achieve this, each
node maintains a successor-list of its r near successors on the
Chord. In the case of a failure, node n notices that its
successor has failed, it replaces with the first live entry in the
list. The stabilize method will correct finger table entries and
successor-list entries pointing to failed node. Performance is
sensitive to the frequency of node joins and leaves versus the
frequency at which the stabilization protocol is invoked [8].

VII. THEORETIC EVALUATION OF THE MODEL
The aforementioned model aims to the development of

an inter-Chord resource provisioning model. We treat
members as CFC nodes, which communicate with each other
based upon their own perceptions as regards the domain
knowledge. The concept is straightforward; we are aspired
from the P2P Chord protocol in order to achieve parallel
objectives, searching for resources within structured and
flexible VOs. At a first glance, a parallelism of both
technologies shows that major advantages of Chord network
such as fault-tolerance, scalability, self-organisation,
decentralisation and effective lookup are dependable
requirements for a successful Cloud setting.

We first start our method by transforming a Cloud into a
Chord. Each member IP address (along port) is hashed using
the SHA-1. Then nodes are placed into the Chord according
to their hash id which we have called node identifier. The
snapshot profile is also hashed and keys are spread across the
Chord members in a way in which the key id is greater or
equal to the node identifier. The same procedure occurs for
every VO. At the same time we assume that nodes from
different VOs may communicate with each other forming a
CFC neighbouring. The inter-Chord collaboration model
initializes inter-cooperated members which always join the
Chord with the smallest number of nodes. Then a Chord
stabilize method will run which will transform Chords
according a pattern. The pattern will be able to decide new
Chords size and their inter-connections.

494

Figure 7: The inter-Chord generations

Figure 7 illustrates that procedure. Using this method
member we can achieve efficient resource lookup as Chord
network can find a data or send a message to any arbitrary
node in only O(log N) steps.

VIII. INSPIRATION OF THE INTER-CHORDS
RELATIONS PATTERN

To facilitate management and control of the inter-Chords
communication it is required to develop a pattern algorithm.
This pattern has to be able to manage and organise an infinite
number of Chords in a structured way. More specifically, we
suggest that arrangement and construction of inter-Chords
may be correlated to the Mandelbrot set. If Chords are
treated as fractals we may design a complex and infinite
scale of VOs. Fractals are objects that display self-similarity
at various scales. Magnifying a fractal reveals small-scale
details similar to the large-scale characteristics [10].
Although the Mandelbrot set is self-similar at magnified
scales, the small scale details are not identical to the whole.
In our method, we first create an initial population of inter-
chords and continue generation at the same pattern. In fact,
the pattern of inter-Chords connections have to be similar to
the Mandelbrot set.

Figure 8: The Mandelbrot Set pattern

The Mandelbrot set is a connected set of points in the

complex plane. For achieving that we need to pick a point z0
in the complex plane and calculate next points as:
z1=z02+zo, z2=z12+z0, z3=z22+z0, etc. If the distance of the
sequence is 2 continually, then point z0 is said to be in the
Mandelbrot set. According to [11], figure 8 shows that by
zooming in on the first image shows out self similarities in
the basic pattern and so on.

IX. CONCLUSION
In the work herein we have addressed a notable

opportunity to see Cloud as a Chord of members by utilizing
the notion of the CFC model as a way to achieve the inter-
cooperation of distributed nodes. Using this simple and
powerful protocol, we have suggested that Cloud nodes

could maintain information about O(log N) of other nodes.
The lookup protocol also needs the same amount of
messages in order to efficiently locate the desired data (key).
The mechanism scales sufficient with the increased number
of nodes and continues to function well despite the major
changes may happen in the system.

X. REFERENCES
[1] Schubertt, L., Jeffery, K., and Neidecker-Lutz, B., Expert Group

Report, The future of Cloud Computing: Opportunities for European
cloud computing beyond 2010, European commision, Belgium, 2010,
Available at: http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-
final.pdf, Accessed at: 10/10/2010.

[2] Sotiriadis, S., Bessis, N., Huang, Y., Sant, P., Maple, C., “Defining
minimum requirements of inter-collaborated nodes by measuring the
heaviness of node interactions”. in: International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS 2010),
IEEE, Krakow, Poland, February 2010.

[3] Huang, Y., Bessis, N., Brocco, A.., Sotiriadis, S., Courant, M.,
Kuonen, P., Hisbrunner, B., "Towards an integrated vision across
inter-cooperative grid virtual organizations". in: Future Generation
Information Technology (FGIT 2009), pp.120-128, Springer LNCS,
Jeju island, Korea, 2009.

[4] Brunskill E., 2001. Building Peer-to-Peer Systems with Chord, a
Distributed Lookup Service. In Proceedings of the Eighth Workshop
on Hot Topics in Operating Systems (HOTOS '01). IEEE Computer
Society, Washington, DC, USA,

[5] Tsoumakos D., and Roussopoulos N., 2006. Analysis and comparison
of P2P search methods. In Proceedings of the 1st international
conference on Scalable information systems (InfoScale '06). ACM,
New York, NY, USA

[6] Bessis, N., Huang, Y., Norrington, P., Brown, A., Kuonen, P., And
Hirsbrunner, B., 2010. Modelling of a Self-led Critical Friend
Topology in Inter-cooperative Grid Communities, International
Journal of Simulation Modelling Practice and Theory, Elsevier,
(available online on July 7, 2010, to appear in Volume 19, Issue 1,
January 2011), ISSN: 1569-190X, p.p.: 5-16.

[7] Dan, Y., XinMeng, C., and YunLei, C., 2005. An Improved P2P
Model Based on Chord. In Proceedings of the Sixth International
Conference on Parallel and Distributed Computing Applications and
Technologies (PDCAT '05). IEEE Computer Society, Washington,
DC, USA, 807-811.

[8] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.,R., Kaashoek,
M., F., Dabek, F., and Balakrishnan, H., 2003. Chord: a scalable peer-
to-peer lookup protocol for internet applications. IEEE/ACM Trans.
Netw,11, 1 (February 2003)

[9] Rahnama , A., Habibi, J., Rostami, H., Abolhassani H., 2005, A
semantic addressable network, IADIS International Conference on
WWW/Internet, p.p 43-51.

[10] Sun, N., Miyazaki, R., and Yoshida. N., 2010. Complex mapping
with the interpolated Julia set and Mandelbrot set. In ACM
SIGGRAPH ASIA 2010 Posters (SA '10). ACM, New York, NY,
USA, , Article 49

[11] Schmidt, H., Mandelbrot Applet:
 http://www.h-schmidt.net/MandelApplet/mandelapplet.html,
Accessed at 22/1/2010

[12] Li, J., Li, B., Du, Z., and Meng, L., CloudVO: Building a Secure
Virtual Organization for Multiple Clouds Collaboration. In
Proceedings of the 2010 11th ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD '10). IEEE Computer Society,
Washington, DC, USA

495

