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Abstract — This work covers the inter-cloud meta-scheduling 
system that encompasses the essential components of the 
interoperable cloud setting for wide service dissemination. 
The study herein illustrates a set of distributed and 
decentralized operations by highlighting meta-computing 
characteristics. This is achieved by using meta-brokers that 
determine a middle-standing component for orchestrating the 
decision making process in order to select the most 
appropriate datacenter resource among collaborated clouds. 
The selection is based on heuristic performance criteria (e.g. 
the service execution time, latency, energy efficiency etc.). Our 
solution is more advanced when compared to conventional 
centralized schemes, as it offers robust real-time scalable, 
elastic and flexible service scheduling in a fully decentralized 
and dynamic manner. Similarly, issues related with 
bottleneck on multiple service requests, heterogeneity, 
information exposition and consideration of variation of 
workloads are of prime focus. In view of that, the whole 
process is based upon random service requests from users 
that are clients of a sub-cloud of an inter-cloud datacenter 
and access is done via a meta-broker. The inter-cloud facility 
distributes the request for service by enclosing each 
personalized service into a host virtual machine. The study 
presents a detailed discussion of the algorithmic model for 
demonstrating the whole service dissemination, allocation, 
execution and monitoring process along with the preliminary 
implementation and configuration on a proposed SimIC 
simulation framework. 

Keywords: Inter-cloud; service meta-scheduling; cloud service 
distribution; Meta-brokers, SimIC, cloud metrics 

I. INTRODUCTION 
The Inter-Cloud Meta-Scheduling framework (ICMS) 

encompasses the architectural constraints of the 
interoperable cloud functionality for achieving wide 
distribution and remote invocation of services. Specifically, 
the study illustrates that the ICMS is characterized as a 
distributed and decentralized meta-computing operation 
identical to a meta-scheduling heuristic operation. The last 
one originally defines that each resource has an internal 
(local) and an external (meta-) component for processing 
decision-making [1]. Thus, user requests for services are 
directly submitted to the meta-component that decides to 
which local resource to relocate it. Usually these meta-
components (meta-schedulers) have the role a broker (or a 
meta-broker) that arranges transactions among clients and 
clouds. It is actually a middle-standing element for 
orchestrating the selection process of the most competent 
resource based on performance criteria [3] e.g. redirect 

services to low or under-utilized clouds, achieve minimum 
execution time or short latency times, or even low energy 
consumption occasion of datacentres. In the simplest of the 
cases, meta-brokers query each other on request or in 
regular intervals so as to collect current computational load 
data for finding the site for executing the user service. 
However, in large-scale settings e.g. inter-clouds this 
progress raises NP-complete problem related matters, thus 
heuristic evaluation criteria are required to take place [7]. 
This encompasses methods that used in order to achieve an 
overall satisfactory solution by optimizing the selected 
performance criterion. This approach is very advanced and 
complex as it allows decentralization and control of 
dynamic-ness compared to the limitation drawn from the 
centralized and hierarchical schemes. 

Specifically, a distributed manager named as the meta-
broker is responsible for service dissemination decision-
making by having spontaneous information of the 
environment. This solution is more realistic compared with 
a complete knowledge setting and it is related to the 
granularity of the system. For achieving that, the meta-
broker profiles the identifiers of other meta-brokers as well 
as communicates with local resources for information 
exchanging. In contrast, centralized and hierarchical 
schedulers require having a complete knowledge of the 
actual resource meta-actors and pool, thus representing a 
non-realistic approach for large size settings. This 
knowledge includes the number of hosts, number of 
services submitted, the workload of each hosts, the number 
of virtual machines (VMs) and the topology of the system at 
any given time. In contrast, the ICMS relies upon the 
distributed scheme, and assumes that this kind of 
information is partial and the services received from the 
meta-brokers are transient and assigned to local or remote 
hosts (resources). This is inspired by the distributed scheme 
that allows services to be transferred to distant hosts for 
achieving a performance criterion (e.g. better local resource 
utilisation, thus leading to global load equilibrium). In view 
of that, the ICMS utilizes the meta-brokering architecture 
for illustrating the inter-cloud service submission, 
distribution, allocation and execution orientation.  

The meta-scheduling decision making process is based 
on random services request from a user or a set of users that 
are clients of a sub-cloud datacentre and access it though a 
meta-broker. The inter-cloud facility distributes the request 
for service and encloses services into VMs (a procedure that 
called sandboxing) that belong to an interoperable sub-
cloud. The ICMS is composed from a set of sub-scheduling 
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heuristics that aim to a) effectively distribute the service 
request submissions, b) respect the service level agreements 
(SLAs) signed by the users and the cloud parties and c) 
optimize the usage of the internal cloud components (e.g. 
VMs etc). Identifying the appropriate heuristic scheduling 
specific is crucial for achieving an efficient scheduling, 
especially when this includes a sufficient amount of internal 
policies that required to be controlled. Examples include the 
way in which VMs share computational power and how 
hosts computation power is provisioned.  

Thus, this work aims of identifying the key policies for 
achieving an efficient optimized inter-cloud service-
exchanging model. To this extend, the study presents the 
architecture of the ICMS along with the algorithmic 
pseudo-codes and the meta-scheduling process. The next 
section II presents the motivation background in the area of 
inter-clouds and section III the ICMS principals. The rest of 
the paper is organized as follows, section IV presents the 
ICMS statement, section V the algorithmic model, section 
VI the selected metrics, section VII the preliminary 
simulation strategy and section VIII the drawing remarks. 
At last in section IX we conclude our study by presenting 
the future research steps. 

II. THE MOTIVATION 
The inter-cloud concept has been introduced over the 

recent years as a logical evolution of the Internet. Instead of 
a file-system oriented Internet, it could be transformed to a 
computational collaborated setting with analogous 
requirements to grids and clouds [11]. Various cloud 
vendors aimed to an interoperable cloud effort by jointly 
establishing federations of clouds. However, these vendor-
oriented endeavours do not base on future standards and 
open interfaces. In contrast, the inter-cloud as an inter-
cooperative infrastructure has been introduced by [4] yet 
from a federated perspective. They present a business model 
of a utility oriented inter-cloud system that includes a 
centralized coordinator per cloud for service dissemination. 
The last one acts on behalf of the user that requests for 
service execution in centralized topology based on service 
level agreements (SLA) necessities. Authors in [9] discuss 
that the broker acts as an SLA resource allocator by 
combining components to achieve the agreed benchmark 
among users and providers. This is a generic view of 
brokers that generate questions on how to manage the most 
effective resource allocation and scheduling. 

Specifically, this could produce significant problems 
when a large bulk of user requests could cause a system 
bottleneck. This problem is identical with clouds, in which a 
new model is required to bridge the gap of resource 
selection, allocation and scheduling. The work of [9] 
presents the traditional brokering strategies for large scale 
computing systems usually present a centralized topology of 
a single broker. Specifically, in a multi-provision setting, a 
broker compares the SLAs of each provider and selects the 
most appropriate one on behalf of the user. This implies that 
the broker requires having a complete knowledge of the 
whole infrastructure along with current availability and 
communication quality levels. This centralized framework 

could be proven to be effective for small scale clouds (e.g. 
cluster-based), however, when it is extended in large-scale, 
it will face problems, e.g. single point of failure, bottleneck 
etc.  

In contrast to all the above works, we vision an inclusive 
design of a total decentralized meta-broker based on our 
previous inter-cloud model presented in [9]. For this 
purpose, the study extends the broker functionality by 
adding a meta-broker on top of the traditional broker for 
allowing communication with other meta-brokers during 
service submission. This means that throughout a request 
for service execution a meta-broker collaborates directly 
with other meat-brokers similar to a meta-scheduling 
system. This will offer significant advantages, as it will 
support highly interoperability; flexibility and heterogeneity 
while at the same time a job execution in a decentralized 
fashion.  

III. THE INTER-CLOUD META-SCHEDULING PRINCIPALS 
The ICMS contains the scheduling procedures for 

controlling the service submissions that performed within 
an interoperable cloud. As scheduling procedure is defined 
the management of the functionalities that directly affect the 
optimization of issues related with the service submission, 
distribution, allocation and execution. However, in the case 
of an inter-cloud system this affects the decision making 
process for directing the virtualization part of resources. 
Fundamentally, these issues are related with the generic 
scheduling functions as happened within a traditional batch 
system. Within this system, the jobs (services in inter-
cloud) are submitted by the users to the resources for 
execution and formed in a queue based on the classic static 
manner. 

However, in the case of inter-cloud, the actual 
requirements (e.g. computational capacity) are not known in 
advance and depending on initial conditions and chosen 
parameters, these are formed during the service submission 
phase. This is because of the dynamic characteristics of the 
setting thus a vital requirement is to be orchestrated by a 
meta-computing component. So the methods for developing 
a flexible setting should be shelf-adaptive and automated 
based on current decisions, during the run-time, regarding 
the given initial requirements and conditions. To this 
extend, ICMS solution achieves dynamic-ness by 
considering the decentralized meta-brokering paradigm in 
real-time decisions, as the employment of effective 
scheduling techniques is crucial in distributed real-time 
systems [6]. 

In general, the meta-brokering functionality aims to 
form the communication bus that bridges the gap among 
local and remote resources by (re)-directing user requests 
and responses to a resource drawn from a criterion. These 
resources could be considered by several conditions, e.g. 
aiming to the best performance in terms of computational 
power or time. Nonetheless, the meta-scheduling systems 
presented in [1], [3] are directly related with fulfilling 
requirements of dynamic systems like the inter-cloud. Thus, 
before continuing with the discussion of the ICMS, the 
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study deliberates the fundamental requirements bellow that 
forms the motivation principals of the ICMS model. 

Initially, interoperability among clouds is not a standard 
procedure and requires a coordination component for 
controlling various inter-communication protocols. This is 
achieved by assigning meta-brokers to act on behalf of 
cloud datacenters in a mutual agreed inter-cloud 
collaboration. In addition, the homogeneous pool of 
resources exists within a cloud system mainly due to the 
common management administration specifics. However, 
when the setting is extended to an inter-cloud, heterogeneity 
becomes an issue that is required to be controlled via the 
SLA agreements. This is to identify appropriate resources 
by utilizing service matchmaking processes for matching a 
host CPU architecture etc. 

The dynamic-ness and elasticity of the inter-cloud in 
terms of large-scale setting and services cannot be 
controlled by traditional solutions (e.g. static scheduler), 
and based on chosen parameters and criteria. This will be 
demonstrated by applying realistic cases of decentralized 
run-time decision-making processes. Also, geographical 
distribution of services among sub-cloud pools is a standard 
case for inter-clouds. However, the decreasing performance 
due to considerable distances for high workload 
dissemination is an issue to be resolved during the 
scheduling system design.  

Lastly, rescheduling concepts, advance reservation 
mechanism and service dissemination priorities could be 
proven to be realistic scenarios for controlling the level of 
service executions among collaborative clouds. This will be 
addressed through the SLA agreement dissemination as well 
the inter-cloud collaboration level. Profiling of resources 
from previous service experiences in the form of recorded 
logs could be considered of adding a future value to the 
overall ICMS performance. Having discussed that, the next 
section presents the ICMS that encompasses various inter-
cloud capabilities. The aim is to demonstrate the service 
distribution among interoperable inter-clouds by presenting 
the statement algorithm, the pseudo-codes and any related 
service oriented policy. 

IV. THE INTER-CLOUD META-SCHEDULING STATEMENT 
The ICMS contains the complete operations and 

interfaces for achieving a job distribution within an inter-
cloud system. It offers the meta-brokering facility that 
allows a wide dissemination of user service requests by 
achieving de-coupling of users and cloud providers while at 
the same time hides the complexity of the low level 
infrastructure from the user. This vision is based on the 
fundamental concept of the Internet network that allows 
various intranets to interconnect with each other. This 
permits clients of various ISPs to access a wide-ranging 
service pool in which users utilize services offered by 
different vendors, cloud providers etc. 

This model involves a decentralized setting that aims of 
handling unpredictability in an efficient manner. 
Accordingly, the ICMS is considered to be fully dynamic as 
the decision making process happens during the run-time 

and not based on predefined choices. Fundamentally, the 
ICMS assumes that various sub-clouds launch 
communication by utilizing a meta-brokering interface that 
is placed on the top of a cloud local-brokers (local-
decisions) and is empowered with a list of other known 
meta-brokers. Various such interfaces are distributed in 
different geographical locations and act similar to 
distributed management systems. This is to say, undertaking 
crucial choices on behalf of their local broker datacentre for 
matchmaking requested and offered resources as well as 
cloud debts. Following to that, the next section introduces 
the algorithmic statement of the service (job) dissemination. 
In advance, the policies regarding the scheduling and 
allocation concepts of the ICMS are presented as well. 

Let assume that there is one inter-cloud setting 
composed by a number of interoperable sub-clouds each of 
which is named as ca where ca���{c1, c2, …, ck}. 
Individually, clouds comprise a number of datacenters dcab 
where dcab � {dc1, dc2, …, dcl} that constitute the physical 
location of the cluster of core resources. Further, each 
datacenter contains a number of physical machines named 
as habc hosts where habc ��{h1, h2, …, hm} in such way that 
the computational capacity of machines integrates the 
augmented cloud computational competency. In addition, 
each datacenter dcab generates a number of local-brokers 
lbrad � {lbr1, lbr2, …, lbrp} and assigns one local-broker per 
user submission for managing the internal service 
allocation and execution of a cloud ca. At last, each of the 
hosts generate or instantiate a number of VMs for 
sandboxing the service requirements. Each vmabce � {vm1, 
vm2, …, vmr} represents the virtualized part of a datacenter 
host (machine) that eventually contains and executes user 
service submission.  

Within such system, each datacenter local-broker lbrad 
belonging to a datacenter dcaab generates a number of 
meta-brokers mbrae � {mbr1, mbr2, …, mbrs} and assigns 
one meta-broker per user submission and per local-broker 
for managing the exchanging of information among all the 
components (users, local and meta-broker). A user submits 
to one meta-broker of a cloud that could have more than 
one meta-brokers, depending on the experimental case, 
however, the default configuration is that one cloud has 
one meta- and local-broker. Usually the service life-cycle 
encompasses a user that requests a service allocation that 
contains a requirements specification. Then, it passes the 
request to the meta-broker that could be defined as the 
user’s personalized interface. The last one distributes the 
request to interconnected meta-brokers that exists within a 
public profile named as meta-registry by always aiming to 
meet SLA specification. The last one is generated from the 
requirements specification submission. The job then is 
directly sent from meta- to local-broker and then to the 
low-level infrastructure of the cloud datacenter. This is to 
say that each job jt � {cl1, cl2, …, cly} is assigned to a  
virtual machine vmabce that has been generated to a remote 
host habc belonging to a cloud ca and its datacenter dcab.  

For demonstrating that, figure 1 presents the 
partnership scenario of 3 clouds named as clouda, cloudb, 
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cloudc that are sub-clouds of the ICMS. Specifically, a 
user1 requests for resources (joba) by establishing 
connection with a clouda. Then, clouda assigns to the user a 
local-brokera and a meta-brokera. The aim is to differentiate 
the internal procedures that are handled by the local-
brokera and the external procedures for requesting 
resources from the inter-cloud that are handled by meta-
brokera. Each meta-broker encompasses a meta-registry 
that is an address book of public meta-brokers trusted and 
available to receive requests and send responses for 
resource availability (e.g. meta-brokera and meta-brokerb).  

Firstly a request is sending to local resources from 
meta- to local-brokera. If the SLA is matched and resources 
exist the local cloud executes the request. In a different the 
request is send to the meta-brokerb and meta-brokerc

respectively, wherein each of which forward it to the 
internal local-brokers (local-brokerb and local-brokerc) for 
proceeding with matchmaking joba requirements and SLAa 
for resource provisioning specification. If a meta-broker is 
capable of performing the job only then it sends a request 
back to the meta-brokera, that sends the job to the first 
responding meta-broker. After that, the decision-making 
process happened within the cloud (local-broker) and 
hypervisor that chooses the resource to be utilized by 
calling resource allocation and execution policies. The 
resources are allocated in the form of a VM that generated 
within a remote host of the selected datacenter. Finally, the 
user instantiates the VM and executes the joba in a remote 
sub-cloud. 

 
Figure 1: The cloud service request distribution 

V. THE INTER-CLOUD META-SCHEDULING 
FRAMEWORK: ALGORITHMIC STRUCTURE 

The ICMS is composed from a set of statement 
algorithms that handle the details of the complete service 
life-cycle and represent the enterprise architecture of the 
inter-cloud. By splitting the whole development into sub-
phases, the study aims to the efficient management of the 
dynamic and iterative processes. The ICMS is formed by a 
total of four phases namely as a) the service request, b) the 
service distribution, c) the service availability, and d) the 
service allocation. During these phases various components 
interact with each other (e.g. user, local-broker, meta-
brokers, datacenters, hosts, VMs) along with several 
policies for decision-making processes (e.g. resource 
availability, utilization models, hosts and VMs scheduling 
and allocation mechanisms etc). Before that, we clarify the 
requirements of the service as posed by the user in order to 
determine the performance measures. Specifically, we 
assume that at a preliminary stage the user cloud requests 
for an infrastructure as a service (IaaS) cloud capacity that 
encompasses software as a service (SaaS) characteristic. 
Thus, the user requests for cores, CPU power, memory, 
storage and bandwidth as well as controller (e.g. drives) 
and platform specification (e.g. operating system).  

The SaaS is defined by an average number of 
instructions per program and cycles per instructions for 
measuring the software requirements of the hardware 
capacity (clock rate of host). This will eventually allow us 
to determine the performance criteria of the various ICMS 
entities. Thus, starting with the service submission, we 
assume that the following scenario is taking place. A user 
requests for a job (that is sandboxed to a VM) and can get 
x of 1 (%) of the total augmented host capacity (x is 
defined by the cloud administrator) of the datacentre and 
requires executing a set of software (programs) with y 

instructions, and CPI= z (e.g 300 cycles / 100 instructions 
= 3) with clock rate w MHz (e.g. 25% of 4000MHz of Host 
with single core). The CPI value considers the cycles per 
instructions required from specific software. The 
performance of the services is analogous to the 
performance of the VM that executes the service and to the 
overall latency till the service execution started. It should 
be mentioned that the x% denotes the percentage of the 
machine to be dedicated to the VMs. The rest will be 
required by the host in order to operate in highly 
performance rates. 

Formula (1) presents the performance of the VM in 
terms of execution time with regards to requirements posed 
by the user for a request of a mono-processor VM. 
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Also the CPI represents the cycles per instruction count 
and given by formula (2). 
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Formula (3) presents the performance of the VM for 
execution time measures by considering a multi-processor 
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request. The h parameter demonstrates the time duration of 
the VM leasing by the cloud user. 
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This includes the CPU and cores capacity as required by 
the user in the user submission. For calculating the CPU 
burst of the VM in formula (4), we add a coefficient value 
to the overall user request for controlling further 
experimental analysis. In addition, we multiply that value 
with the number of cores for deciding the requested CPU 
for a multi-processor system as in formula (3). Similarly, 
we place a coefficient value for each of the computational 
characteristics required by the user e.g. CPU (5) memory-
formula (6), storage-formula (7), bandwidth-formula (8). 
The VMCount represents the VM quantity that shares 
computational capacity. 
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Finally, the performance measure of a service is given 
by formula (9) as follows. 
��������������� � �������������� � ������������	��
� ������

The latency denotes the time that passes till the service 
execution started. Relevant delays involve meta-brokers, 
local-brokers, and hypervisors (host and VM allocation) 
decision-making processes. At last the performance of the 
service is non-relevant to the execution time of the service 
as given by formula (10).  
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Similarly, we measure the performance of the VM as 
given by formula (11) 
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For illustrating the aforementioned mathematical 
formulas and for measuring the performance of a service 
submission, we present a brief scenario case. A user 
requests for a VM with 0.25 (25%) of host performance and 
executes a set of programs with 100*106 instructions, and 
CPI= 3 (300 cycles / 100 instructions) with clock rate 1000 
MHz (0.25 of 4000MHz of Host with single core). The 
performance of the VM is calculated as follows: 
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Thus, the performance of the specific VM is calculated 
by dividing 1 by the execution time, which is an equal to 

3.33. If the total delay of the events from the user to the VM 
is 10 then the execution time and performance of the service 
is calculated as follows: 
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At last, a useful computational metric for measuring 
performance capacity of a job is the million of instructions 
per second (mips) that are required by the user. This 
demonstrates the application requirements and is utilized as 
an indicator to the required CPU power by a user. In 
addition, by using this metric we can compare user 
specifications if required. Formula (12) shows how mips are 
calculated. 
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By having defined the initial requested performance 
measures, then we present the actual algorithmic structure 
of the ICMS framework. At last we present the metrics that 
shows the performance of the algorithms with respect to 
required as initially calculated by formula (8). The core 
algorithms represent the service (or job) user submission 
life-cycle to an inter-cloud setting.  

A. The Service-Request algorithm 
The algorithmic pseudo-code I demonstrates the job 

(service) formation and request according to a user 
specification for a cloud leasing case. 
Algorithm I: Service-Request 
Require: user_name: user identification or name 
 user_OS: user operating systems 
 user_platform user desired platform (intel) 
 user_memory user RAM memory  
 user_cores user desired cores number 
 user_CPU_speed user CPU capacity 
 user_H/D_controller user controller (e.g. CDROM) 
 user_storage user storage capacity 
 user_BW user bandwidth 
 user_spec user specification on software 
 user_instr user instructions 
 user_CPI user cycles per instructions 
 user_hours user usage duration 
 user_deadline user scheduling deadline 
 user_pri_level user priority level 
 user_delay user delay value 
 user_jobs user total jobs 
 user_cloud user cloud selections 
 user_profile user profile specs 
 user_clock user required power 
 current user dynamic event data 
 jobi user job 
 meta-brokern user linked meta-broker 
 monitor_trace monitor log and traces 
 tag user tag 
 added_delay increasing delay figure 
Methods: update_user_profile 

(requirement(s)) 
updates the require parameter 

 send(entity, event data): send request and data 
 acquire(user, meta-

broker) 
assign user a meta-broker 

 monitor(job, 
delay,user,mips) 

monitor current data 
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 SLA(specification, 
profile) 

the SLA configuration of user 

1:    user_profile← (user_name, user_OS, user_platform, user_memory, 
user_cores, user_CPU_speed, user_H/D_controller, user_storage, 
user_BW, user_spec, user_instr, user_CPI, user_hours, user_deadline, 
user_pri_level, user_delay, user_jobs, user_cloud, user_profile) 

2:    user_CPU_speed ← user_CPU_speed * user_cores 
3:    update_user_profile (cpu_clock) 
4:    mips ← user_CPU_speed / user_CPI * 1/106 
5:    for all user_jobs 
6:        current ← jobi, user_delay, user_spec, meta-brokern, user_name 
7:        acquire (user_name, meta-broker) 
8:        added_delay = added_delay + user_delay 
9:        SLA (user_spec, profile)  
10:      send (meta-broker, added_delay, current, SLA, tag) 
11:      monitor (jobi, user_delay, user_name, mips) 
12:    end for 

Specifically, the Service-Request (I) algorithm forms the 
user profile, creates the SLA according to specific job and 
assigns a meta-broker to the user (that represents the user 
interface). Furthermore, the algorithm calculates the 
required CPU speed in accordance to the CPU cores and the 
needed mips as an preliminary performance measure. At 
last, for each of the user jobs the algorithm sends a request 
to the meta-broker (each one after the other by allowing a 
delay to pass) while the meta-broker acts reactively by 
instantiating the Service-Distribution algorithm. During the 
whole service life-cycle the monitor component keeps a log 
of job scheduling traces for future usage. 

B. The Service-Distribution algorithm 
The Service-Distribution algorithm exemplifies the job 

request exchanging among meta-brokers for large scale 
scheduling. The aim is to request for capacity and 
competency of inter-connected nodes (other meta-brokers) 
in executing certain jobs (user profiles and data that are 
send by the Service-Request algorithm) that cannot be 
executed locally. In a different case (local execution) the 
meta-broker forwards the job to the low-level local cloud 
infrastructure. In addition, the decentralized and incomplete 
knowledge of meta-brokers makes solution more flexible. 
The following algorithmic pseudo-code II demonstrates 
such procedure. 

Algorithm II: Service-Distribution 
Require: meta-broker_name: meta-broker identity 
 meta-broker_delay meta-broker decision latency 
 meta-registry list with linked meta-brokers 
 added_delay increasing delay figure 
 meta-broker_delay meta-broker latency 
 res_meta-broker responding meta-broker 
 req_meta-broker requesting meta-broker 
 flag flag to control termination or 

re-distribution 
 count iteration counter 
 num integer variable  
Method: get(user_data) user sent data 
 update(tag) update the tag value 
 send(entity, event data): send request and data 
 monitor(job, 

delay,user,mips) 
monitor current data 

 process(meta-
broker_delay) 

process of meta-broker decision 
making time 

 terminate(messages) terminate messages after the  

selected meta-broker  
 re-distribute jobs are redistributed 
1:    get (user_name, added_delay, current, SLA, tag) 
2:    process (meta-broker_delay) 
3:    added_delay ← get (added_delay) + meta-broker_delay 
4:    if get(tag) is user tag then 
5:      send (cloud, added_delay, current, SLA, tag) 
6:      monitor (jobi, user_delay, user_name, mips) 
7:   end if 
8:   if get(tag) is cloud tag then 
9:      for all meta-brokerinter � meta-registry 
10:      send(meta-brokerinter, added_delay, current, SLA, tag) 
11:      monitor (jobi, user_delay, user_name, mips) 
12:   end for 
13: end if 
14: meta-brokerinter→ res_meta-broker 
15: if get(tag) is res_meta-broker then 
16:     send(bucket, added_delay, current, SLA, tag) 
17:     monitor (jobi, user_delay, user_name, mips) 
18: end if 
19: if get(tag) is req_meta-broker then 
20:     if flag → True then 
21:        update(tag ← user tag) 
22:        send(bucket, added_delay, current, SLA, tag) 
23:        monitor (jobi, user_delay, user_name, mips) 
24:        if count = num {default: 3} then 
25:           terminate_messages(meta-brokerinter) 
26:     else 
27:     terminate_messages(meta-brokerinter) 
278: end if 

The Service-Distribution (II) algorithm is based on tags 
that are sending from one entity to the other. Initially, the 
algorithm gets every job came from user(s) and processes it 
for a delay. Then, it controls a message passing mechanism 
presented in [2] for distributing jobs depending on the tag 
value (initialized by various component). This includes the 
following: 

a) In case that the tag denotes a message came from 
the user then it will be forwarded to the local cloud. 

b) In case that the tag denotes a message came from 
the local cloud then it will be forwarded to the inter-linked 
meta-brokers (extracted from the meta-registry). Further to 
this, the first responder that is capable of executing the job 
gets the user profile for further delegation. 

c) In case that the tag denotes a message that came from 
the same meta-broker (after a circulation) then either re-
distributes the message or it terminates it and suspends the 
job. 

This completes the distribution case wherein requests 
are spread among the meta-brokers relying in the meta-
registry list. In the case that the flag is set to true then each 
job will be iteratively re-distributed till executed. However, 
in the case of a continuously SLA mismatching the 
algorithm keeps a counter that terminates the job after a 
certain value of iterations; the default value is 3. 

C. The Service-Availability algorithm 
The Service-Availability algorithm is responsible for 

primarily producing SLA matchmakings and secondly 
directing a dynamic workload management. This is 
particularly useful for large scale systems wherein various 
requests are submitted in different times thus the system 
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requires to decide whether there is computational capacity 
to execute or not. Thus, the workload management policy 
implementer herein either allows a job to be forwarded for 
execution into the low level infrastructure, or it is returned 
back to the meta-broker for further dissemination (as 
presented in Service-Distribution algorithm). Algorithm III 
pseudo-code illustrates the Service-Availability procedure 
by encompassing dynamic workload management concept. 

Algorithm III: Service-Availability 
Require: meta-broker_name: meta-broker identity 
 cloud_delay cloud decision latency 
 added_delay increasing delay figure 
 cloud_SLA SLA defined by cloud 
 user_profile user formed profile 
 workload figure to current workload 
 jobi job submitted by user 
 host_capacity host augmented capacity 
Method: get(user_data) user sent data 
 send(entity, event data): send request and data 
 monitor(job, 

delay,user,mips) 
monitor current data 

 process(cloud_delay) process of cloud decision 
making time 

1:    get (user_name, added_delay, current, SLA, tag) 
2:    process (cloud_delay) 
3:    added_delay ← get (added_delay) + cloud _delay 
4:    if get(user SLA) match cloud SLA and get(host_capacity) exists 
5:        for all jobi 

6:          get(user_profile(user_CPU, memory, storage, BW)) < workload [i] 
7:          workload [i++]← jobi 
8:          send (datacenter, added_delay, current, SLA, tag) 
9:          monitor (jobi, user_delay, user_name, mips) 
10:     end for 
11:    else 
12:      send (meta-broker, added_delay, current, SLA, tag) 
13:      monitor (jobi, user_delay, user_name, mips) 
14:  end if 

The workload calculation is related with the current host 
capacity in terms of CPU, memory, storage and bandwidth. 
For instance the CPU augmented values is given by formula 
12. For the rest resources the augmented value is 
represented by the sum of the hosts memory, storage and 
bandwidth. 
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The Service-Availability (III) algorithm demonstrates 
that jobs came to the cloud systems (into the local-broker) 
are dynamically controlled for SLA matchmaking and 
current workload and capacity of hosts. In the case that jobs 
can be executed the algorithm forwards each one to the 
datacenter for host and VM allocation. In any other case 
requests are returned back to the meta-broker for 
distribution. In any case the delay increase the job executing 
waiting time. 

D. Service-Allocation 
The Service-Allocation algorithm demonstrates the VM 

allocation policies and jobs execution that enclosed in VMs. 
By default, jobs that arrive in the datacenter are selected for 
execution according to a first come first served queue 
system. This implies that a VM is instantiated or generated 

for each request arrive first in the datacenter management 
component named as hypervisor. The last one takes 
decision for the following policies: 

a) VM generation in a static or dynamic manner. This 
includes that VMs are either generating from scratch or are 
relying in an external storage and space are transferred 
(migrated) to a cloud host for executing a request that has 
been existed previously (in the form of a recorded VM). 

b) Requests for VMs are organized in a deferred queue 
that releases jobs after a criterion passes (e.g. after a number 
of jobs, or after an interval). 

At last the algorithm allocates a host portion and starts 
the VM execution. The local-broker that has knowledge of 
the local resource plan queue monitors this procedure. This 
allows a dynamic (workload management decision is based 
on current queues) and real-time scheduling (queues are 
released after interval criteria) of jobs. It should be 
mentioned that the default ICMS static algorithms include 
the first come first serve, shortest job first, earliest deadline 
first, and priority algorithms. Algorithm IV pseudo-code 
demonstrates aforementioned procedure. 
Algorithm IV: Service-Allocation 
Require: select_VM_allocation_p

olicy 
parameter selection of sharing 
 policy 

 select_queue parameter selection of queue  
algorithm 

 FCFS, SJF, EDF, PA static algorithms 
 jobi user job 
 user_profile user profile data as formed by  

the meta-broker 
 hypervisor_delay hypervisor decision latency 
 dc_delay datacenter decision latency 
 added_delay increasing delay figure 
 key hash key for queueing jobs  
 queue_lenght desired queue size for releasing 

the queue 
 interval desired time for releasing the  

queue 
 static, dynamic VM allocation policies 
 workload parameter for current workload 
Method: get(user_data) user sent data 
 send(entity, event data): send request and data 
 monitor(job, 

delay,user,mips) 
monitor current data 

 process(hyper_delay) process of meta-broker decision 
making time 

 record(VM data) keep log of executed jobs 
 sort(algorithm) scheduling algorithm fashion 
 host_allocation(data) allocating host computational  

resources 
 exists(VM) checking whether VM rely in 

a pool 
 migrate(VM) transfer VM from pool to  

datacenter 
 process(hyper_delay) process of hypervisor decision 

making time 
 gen(metric) generate metric results 
1:    get (user_name, added_delay, current, SLA, tag) 
2:    select_VM_allocation_policy [static, dynamic] 
2:    select_queue [FCFS, SJF, EDF, PA] 
3:    for all jobi � queue[] 
4:        get (user profile) 
5:        added_delay ← get (added_delay) + hypervisor _delay+dc_delay 
6:        queue [key, jobi] 
7:        select_queue.sort(FCFS) 
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8:        if queue_lenght>=s or interval=i then 
9:            if select_VM_allocation_policy = static 
10:               host_allocation(CPU,memory, storage, BW) 
11:               process(VM) 
12:               record(VM, jobi) 
13:          else if exists(VM) then 
14:                     migrate(VM) 
15:                  else  
16:                     goto(line10) 
17:          end if 
18:      workload ← host_allocation(CPU, memory, storage, BW) 
19:      send (local-broker, workload) 
20:      monitor (jobi, user_delay, user_name, mips) 
21:      gen(throughput, utilization, turnaround, makespan, energy, cost) 
22:  end for 

Finally, the Service-Allocation  (IV) algorithm allocates 
host resources and executes the job. At last the monitor 
operation keeps a log of traces for each of the job 
exchanging among entities. 

VI. ALGORITHMIC METRICS 
The monitoring procedure generates a number of 

metrics by instantiating data generated from the whole 
ICMS process as follows. Initially, the throughput value, 
formula (13), of cloud includes the number of jobs that 
matched and executed by the cloud. 
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This affects the cloud utilization parameter, formula 
(14) that calculates the number of jobs (percentage) 
executed from the whole user(s) input. 
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The turnaround time for a job calculated by formula (15) 
includes the execution time and the current delay on an 
entity (e.g. turnaround time in meta-broker or VM). 
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The makespan formula (16), demonstrates the sum-up of 
the VM execution time plus the total delay due to service 
dissemination. 
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Finally, energy efficiency measures are calculated by 
formulas (17), (18) with respect to the host configuration on 
watts, the usage of machine in terms of hours and the cost 
per kilowatt per hour. The cloud administrator defines these 
values prior the initialization of the ICMS. 
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VII. EXPERIMENTATION AND SIMULATION USING SIMIC 
The ICMS is implemented in the ‘Simulating the Inter-

Cloud’ (SimIC) toolkit [10], which is a discrete event 
simulation framework that replicates an inter-cloud service 
dissemination setting. Specifically, the ‘Simulating the 
Inter-Cloud’ (SimIC) is a discrete event simulation toolkit 

based on the process oriented simulation package of 
SimJava. We consider our solution an alternative of the 
CloudSim simulation framework [5] for achieving cloud 
interoperability. Specifically, we implemented the SimIC 
toolkit to allow experimentation on event exchanging 
among components in terms of messages that are sending 
among the system entities at different time intervals. Further 
to this, SimIC compliments CloudSim as includes a variety 
of meta-scheduling inspired characteristics for achieving 
job dissemination, resource discovery services, dynamic 
workload management, real time scheduling of jobs in VMs 
and others presented in [10]. Specifically, the resource 
discovery service has been extensively discussed in [8]. The 
preliminary simulation study illustrates the performance of 
the algorithm in terms of producing benchmarks of the 
selected performance measures. For instance, the user 
requests for a VM with e.g. 0.25 of 1 host performance and 
executes a set of programs with 100*106 instructions, and 
CPI (cycles per instructions) = 3 (300 cycles /100 
instructions) in a machine with clock rate 1000 MHz (0.25 
of 4000MHz of Host with single core). The performance of 
the VM is calculated by formula (10).  

For demonstrating the algorithms performance we 
implement a scenario case of an inter-cloud that contains 4 
sub-clouds with different SLA specifications. To this setting 
we place 4 users that send 2 to 10 service requests. Each 
time the ICMS algorithm distributed request according to 
section V strategies. Table 1 shows a simple user 
specification formation. 

TABLE 1: USER SPECIFICATION FILES 

User specification text files 
Hardware Requirements Software Requirements 

Username: u_ste_1 
HostOS: Linux 
Platform: Intel 
Memory(GB): 2 
CPU-cores: 2 
CPU-speed: 3000 
H/D-Controller: SAN 
Storage-HD: 1000 
BW: 1000 

Username: u_ste_1 
SW1: spec_1_cloud_1 
Instructions: 1000000000 
CPI: 3  
Hours: 240 
Deadline: 555 
Priority: 4 

 
Further to this we assume that user 1 SLA matches with 

cloud 1 or cloud 4, user 2 with cloud 2, user 3 with cloud 1 
or cloud 4, user 4 with cloud 1, cloud 2 and cloud 3. The 
ICMS schedules and executes VMs by instantiating ready 
made VMs from a list. Thus in this case we execute the 
dynamic VM instantiation case. In addition, we run the 
following simulation configuration: cloud 1 with 4 hosts 
with different CPU-speed (host 1:1000 MHz, host 3:500 
MHz etc.) and same rest resources (e.g. Memory is set to 
10). The average delay among components is set to 10 ms. 
and the counter for releasing jobs is set to 7. This implies 
that after 7 jobs the queue will start execution of 7 VMs 
concurrently. If the queue length is greater than 7 then the 
system generates interval calls after 800ms. 

The preliminary experimental analysis of the real-time 
scheduler is very prospect (in FCFS queue) as the average 
values of turnaround and makespan show a decreasing 

71



trend. This implies that for increasing workloads the 
algorithm distributes the jobs more efficiently by 
considering the ICMS resource management criteria 
(queuing jobs). In addition, the average value of VM 
execution time, cost and energy slightly change during the 
service dissemination, thus this does not affect the metrics. 
Figure 2 demonstrates the performance of the four ICMS 
algorithms. 

Figure 2: The ICMS four algorithms in the SimIC 

Similarly, we execute a dynamic workload management 
(this time we use SJF algorithm) to illustrate the service 
distribution when availability is low. Specifically, we 
decrease the capacity of cloud 1 as we assume that there is a 
fault case and the host availability is reduced notably. 
Figure 3 illustrates the workload figures of the ICMS when 
non-dynamic versus dynamic management is taking place. 

 

 
Figure 3: The ICMS for non-dynamic vs. dynamic workload management 

Figure 4: The job utilization for non-dynamic and dynamic workloads 

 
Figure 5: The job performance rates (turnaround and makespan) and 

trends for submissions 2 to 10. 

It is apparent (figure 3) that the average execution time 
is slightly decreased (from 189.3175 to 188.7017949) as the 
ICMS allocate more resources on a different cloud. In 
addition, the average turnaround and makespan are 
increased as the number of job requests is increased, 
however without affecting the VM execution performance. 
Finally, Figure 4 shows the sub-clouds utilization figures 
for both cases while figure 5 demonstrates the job variation 
(2-10) performance for the 4 users inter-cloud submission 
case study. The trend lines (polynomial) show that the 
performance turnaround and makespan increase tendency as 
the number of jobs gets bigger. 

VIII. REMARKS 
The study presents the ICMS a meta-computing inspired 

solution for inter-clouds. The algorithmic solution optimizes 
the submitted workloads by combining multiple brokers 
into a single aggregated view, identical to distributed 
resource managers. It should be mentioned that our work is 
focusing on performance optimization of the IaaS inter-
cloud components, thus issues such as security, regional 
cloud governance, pricing models etc. are considered out of 
the scope of the study it self. The architectural design of the 
inter-cloud meta-broker is totally decentralized and 
dynamic by enhancing the decision making process for 
service distribution and real-time job scheduling. Our 
solution offers a modular structure of the whole user job 
submission life-cycle by offering various advantages and it 
is implemented in SimIC. The inspiration of the design of 
the core entities of the SimIC came from the CloudSim 
framework [5], however our classes have been re-designed 
to compliment additional features as follows. 

a) The meta-brokering distribution works on a real-time 
response model wherein certain data is exchanged 
during run-time among collaborated meta-brokers. 
This minimizes the information exposition and 
increases dynamic-ness. 

b) The transparency of the system is increased due to the 
de-coupled functionality of the system. This includes 
that users are not de-attached from their desired cloud 
provider, but the last one could search further to 
disseminate the service request to interlinked partners. 
In addition, meta-broker expands the service elasticity 
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from the capacity of a cloud to the capacity of the 
inter-cloud, thus offering an almost infinite elasticity.  

c) Scalability of service executions increased due to the 
large number of resources and capabilities. This 
encompasses various VMs that different clouds could 
instantiate according to demands. Further to this, 
heterogeneity is also considered due to the variety of 
datacenter resources and services. 

d) The realization of the ICMS happens in a partial and 
decentralized knowledge of the resource pool. This is 
because each meta-broker has a complete knowledge 
of the local datacenter but a transient and incomplete 
knowledge of the remote resources. 

e) Meta-brokers aim of improving the efficiency of 
service execution for both service cloud providers and 
cloud consumers. This could offer an energy aware 
solution wherein history records of previous 
successful service executions. 

f) Trough static and dynamic instantiation of VMs we 
aim of adding value with regards to history records. 
Specifically, ICMS allows the decision on whether to 
generate a new VM (static) or migrate one (dynamic) 
from a storage device. The decision is based in 
historical delegation records. 

g) The re-active management of heterogeneous service 
submissions in the form of VMs extends inter-cloud 
capabilities. ICMS allows requests for heterogeneous 
resources to be allocated according to SLAs. 

IX. CONCLUSIONS 
This work presents the initial study of the ICMS 

algorithmic structure for defining the most important 
internal procedures of the inter-cloud. Specifically, the 
inter-cloud facility disseminates the request for service by 
sandboxing operations into VMs that belong to an 
interoperable sub-cloud. The ICMS is composed from a set 
of sub-scheduling heuristics that aim to a) request and 
accept connection with remote sites, b) distribute requests 
within that system, c) search for available resources, d) 
allocate the resource based on a criterion, e) execute a VM 
within this resource, and f) monitor the whole procedure for 
keeping performance measures. The primary experimental 
analysis shows a prospect performance figure of the 
workload management.

The future steps of our research include the realization 
of the VM migration strategy for dynamic VM instantiation. 
Principally, we will further improve the initial ICMS 
algorithms as well as we will expand functionalities (e.g. 
further optimize service distribution algorithm). In addition, 
we aim to use the SimIC in order to further explore 
benchmarks and results extracted from a typical cloud and 
inter-cloud. This will produce further experimental analysis 
in order to support our work. An important concept to 
develop is the sharing of the host computational capacity 
among the VMs. The default ICMS model implies that VMs 
are allocated as far as computational power exists. 
However, in the future we will further develop our solution 
in order to accept more advanced policies (including the 
exploration of migration issues). It should be mentioned that 

we employ ICMS in the SimIC toolkit for realizing 
algorithmic structure (four algorithms). In this setting, we 
are developing the whole solution as well as we have 
executed the formulas (metrics) of the aforementioned 
sections. The SimIC is not yet available to the general 
public as it still under implementation. However, modellers 
that require executing SimIC scenarios are encouraged to 
communicate with us. 
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