
The inter-cloud meta-scheduling (ICMS) framework

Stelios Sotiriadis1, Nik Bessis1, Pierre Kuonen2, Nick Antonopoulos1

1School of Computing & Maths, University of Derby, Derby, United Kingdom
2Department of Information and Communication Technologies,

University of Applied Sciences of Western Switzerland (Fribourg), Switzerland
1 (s.sotiriadis, n.bessis, n.antonopoulos)@derby.ac.uk, 2 pierre.kuonen@hefr.ch

Abstract — This work covers the inter-cloud meta-scheduling
system that encompasses the essential components of the
interoperable cloud setting for wide service dissemination.
The study herein illustrates a set of distributed and
decentralized operations by highlighting meta-computing
characteristics. This is achieved by using meta-brokers that
determine a middle-standing component for orchestrating the
decision making process in order to select the most
appropriate datacenter resource among collaborated clouds.
The selection is based on heuristic performance criteria (e.g.
the service execution time, latency, energy efficiency etc.). Our
solution is more advanced when compared to conventional
centralized schemes, as it offers robust real-time scalable,
elastic and flexible service scheduling in a fully decentralized
and dynamic manner. Similarly, issues related with
bottleneck on multiple service requests, heterogeneity,
information exposition and consideration of variation of
workloads are of prime focus. In view of that, the whole
process is based upon random service requests from users
that are clients of a sub-cloud of an inter-cloud datacenter
and access is done via a meta-broker. The inter-cloud facility
distributes the request for service by enclosing each
personalized service into a host virtual machine. The study
presents a detailed discussion of the algorithmic model for
demonstrating the whole service dissemination, allocation,
execution and monitoring process along with the preliminary
implementation and configuration on a proposed SimIC
simulation framework.

Keywords: Inter-cloud; service meta-scheduling; cloud service
distribution; Meta-brokers, SimIC, cloud metrics

I. INTRODUCTION
The Inter-Cloud Meta-Scheduling framework (ICMS)

encompasses the architectural constraints of the
interoperable cloud functionality for achieving wide
distribution and remote invocation of services. Specifically,
the study illustrates that the ICMS is characterized as a
distributed and decentralized meta-computing operation
identical to a meta-scheduling heuristic operation. The last
one originally defines that each resource has an internal
(local) and an external (meta-) component for processing
decision-making [1]. Thus, user requests for services are
directly submitted to the meta-component that decides to
which local resource to relocate it. Usually these meta-
components (meta-schedulers) have the role a broker (or a
meta-broker) that arranges transactions among clients and
clouds. It is actually a middle-standing element for
orchestrating the selection process of the most competent
resource based on performance criteria [3] e.g. redirect

services to low or under-utilized clouds, achieve minimum
execution time or short latency times, or even low energy
consumption occasion of datacentres. In the simplest of the
cases, meta-brokers query each other on request or in
regular intervals so as to collect current computational load
data for finding the site for executing the user service.
However, in large-scale settings e.g. inter-clouds this
progress raises NP-complete problem related matters, thus
heuristic evaluation criteria are required to take place [7].
This encompasses methods that used in order to achieve an
overall satisfactory solution by optimizing the selected
performance criterion. This approach is very advanced and
complex as it allows decentralization and control of
dynamic-ness compared to the limitation drawn from the
centralized and hierarchical schemes.

Specifically, a distributed manager named as the meta-
broker is responsible for service dissemination decision-
making by having spontaneous information of the
environment. This solution is more realistic compared with
a complete knowledge setting and it is related to the
granularity of the system. For achieving that, the meta-
broker profiles the identifiers of other meta-brokers as well
as communicates with local resources for information
exchanging. In contrast, centralized and hierarchical
schedulers require having a complete knowledge of the
actual resource meta-actors and pool, thus representing a
non-realistic approach for large size settings. This
knowledge includes the number of hosts, number of
services submitted, the workload of each hosts, the number
of virtual machines (VMs) and the topology of the system at
any given time. In contrast, the ICMS relies upon the
distributed scheme, and assumes that this kind of
information is partial and the services received from the
meta-brokers are transient and assigned to local or remote
hosts (resources). This is inspired by the distributed scheme
that allows services to be transferred to distant hosts for
achieving a performance criterion (e.g. better local resource
utilisation, thus leading to global load equilibrium). In view
of that, the ICMS utilizes the meta-brokering architecture
for illustrating the inter-cloud service submission,
distribution, allocation and execution orientation.

The meta-scheduling decision making process is based
on random services request from a user or a set of users that
are clients of a sub-cloud datacentre and access it though a
meta-broker. The inter-cloud facility distributes the request
for service and encloses services into VMs (a procedure that
called sandboxing) that belong to an interoperable sub-
cloud. The ICMS is composed from a set of sub-scheduling

2013 IEEE 27th International Conference on Advanced Information Networking and Applications

1550-445X/13 $26.00 © 2013 IEEE

DOI 10.1109/AINA.2013.122

64

heuristics that aim to a) effectively distribute the service
request submissions, b) respect the service level agreements
(SLAs) signed by the users and the cloud parties and c)
optimize the usage of the internal cloud components (e.g.
VMs etc). Identifying the appropriate heuristic scheduling
specific is crucial for achieving an efficient scheduling,
especially when this includes a sufficient amount of internal
policies that required to be controlled. Examples include the
way in which VMs share computational power and how
hosts computation power is provisioned.

Thus, this work aims of identifying the key policies for
achieving an efficient optimized inter-cloud service-
exchanging model. To this extend, the study presents the
architecture of the ICMS along with the algorithmic
pseudo-codes and the meta-scheduling process. The next
section II presents the motivation background in the area of
inter-clouds and section III the ICMS principals. The rest of
the paper is organized as follows, section IV presents the
ICMS statement, section V the algorithmic model, section
VI the selected metrics, section VII the preliminary
simulation strategy and section VIII the drawing remarks.
At last in section IX we conclude our study by presenting
the future research steps.

II. THE MOTIVATION
The inter-cloud concept has been introduced over the

recent years as a logical evolution of the Internet. Instead of
a file-system oriented Internet, it could be transformed to a
computational collaborated setting with analogous
requirements to grids and clouds [11]. Various cloud
vendors aimed to an interoperable cloud effort by jointly
establishing federations of clouds. However, these vendor-
oriented endeavours do not base on future standards and
open interfaces. In contrast, the inter-cloud as an inter-
cooperative infrastructure has been introduced by [4] yet
from a federated perspective. They present a business model
of a utility oriented inter-cloud system that includes a
centralized coordinator per cloud for service dissemination.
The last one acts on behalf of the user that requests for
service execution in centralized topology based on service
level agreements (SLA) necessities. Authors in [9] discuss
that the broker acts as an SLA resource allocator by
combining components to achieve the agreed benchmark
among users and providers. This is a generic view of
brokers that generate questions on how to manage the most
effective resource allocation and scheduling.

Specifically, this could produce significant problems
when a large bulk of user requests could cause a system
bottleneck. This problem is identical with clouds, in which a
new model is required to bridge the gap of resource
selection, allocation and scheduling. The work of [9]
presents the traditional brokering strategies for large scale
computing systems usually present a centralized topology of
a single broker. Specifically, in a multi-provision setting, a
broker compares the SLAs of each provider and selects the
most appropriate one on behalf of the user. This implies that
the broker requires having a complete knowledge of the
whole infrastructure along with current availability and
communication quality levels. This centralized framework

could be proven to be effective for small scale clouds (e.g.
cluster-based), however, when it is extended in large-scale,
it will face problems, e.g. single point of failure, bottleneck
etc.

In contrast to all the above works, we vision an inclusive
design of a total decentralized meta-broker based on our
previous inter-cloud model presented in [9]. For this
purpose, the study extends the broker functionality by
adding a meta-broker on top of the traditional broker for
allowing communication with other meta-brokers during
service submission. This means that throughout a request
for service execution a meta-broker collaborates directly
with other meat-brokers similar to a meta-scheduling
system. This will offer significant advantages, as it will
support highly interoperability; flexibility and heterogeneity
while at the same time a job execution in a decentralized
fashion.

III. THE INTER-CLOUD META-SCHEDULING PRINCIPALS
The ICMS contains the scheduling procedures for

controlling the service submissions that performed within
an interoperable cloud. As scheduling procedure is defined
the management of the functionalities that directly affect the
optimization of issues related with the service submission,
distribution, allocation and execution. However, in the case
of an inter-cloud system this affects the decision making
process for directing the virtualization part of resources.
Fundamentally, these issues are related with the generic
scheduling functions as happened within a traditional batch
system. Within this system, the jobs (services in inter-
cloud) are submitted by the users to the resources for
execution and formed in a queue based on the classic static
manner.

However, in the case of inter-cloud, the actual
requirements (e.g. computational capacity) are not known in
advance and depending on initial conditions and chosen
parameters, these are formed during the service submission
phase. This is because of the dynamic characteristics of the
setting thus a vital requirement is to be orchestrated by a
meta-computing component. So the methods for developing
a flexible setting should be shelf-adaptive and automated
based on current decisions, during the run-time, regarding
the given initial requirements and conditions. To this
extend, ICMS solution achieves dynamic-ness by
considering the decentralized meta-brokering paradigm in
real-time decisions, as the employment of effective
scheduling techniques is crucial in distributed real-time
systems [6].

In general, the meta-brokering functionality aims to
form the communication bus that bridges the gap among
local and remote resources by (re)-directing user requests
and responses to a resource drawn from a criterion. These
resources could be considered by several conditions, e.g.
aiming to the best performance in terms of computational
power or time. Nonetheless, the meta-scheduling systems
presented in [1], [3] are directly related with fulfilling
requirements of dynamic systems like the inter-cloud. Thus,
before continuing with the discussion of the ICMS, the

65

study deliberates the fundamental requirements bellow that
forms the motivation principals of the ICMS model.

Initially, interoperability among clouds is not a standard
procedure and requires a coordination component for
controlling various inter-communication protocols. This is
achieved by assigning meta-brokers to act on behalf of
cloud datacenters in a mutual agreed inter-cloud
collaboration. In addition, the homogeneous pool of
resources exists within a cloud system mainly due to the
common management administration specifics. However,
when the setting is extended to an inter-cloud, heterogeneity
becomes an issue that is required to be controlled via the
SLA agreements. This is to identify appropriate resources
by utilizing service matchmaking processes for matching a
host CPU architecture etc.

The dynamic-ness and elasticity of the inter-cloud in
terms of large-scale setting and services cannot be
controlled by traditional solutions (e.g. static scheduler),
and based on chosen parameters and criteria. This will be
demonstrated by applying realistic cases of decentralized
run-time decision-making processes. Also, geographical
distribution of services among sub-cloud pools is a standard
case for inter-clouds. However, the decreasing performance
due to considerable distances for high workload
dissemination is an issue to be resolved during the
scheduling system design.

Lastly, rescheduling concepts, advance reservation
mechanism and service dissemination priorities could be
proven to be realistic scenarios for controlling the level of
service executions among collaborative clouds. This will be
addressed through the SLA agreement dissemination as well
the inter-cloud collaboration level. Profiling of resources
from previous service experiences in the form of recorded
logs could be considered of adding a future value to the
overall ICMS performance. Having discussed that, the next
section presents the ICMS that encompasses various inter-
cloud capabilities. The aim is to demonstrate the service
distribution among interoperable inter-clouds by presenting
the statement algorithm, the pseudo-codes and any related
service oriented policy.

IV. THE INTER-CLOUD META-SCHEDULING STATEMENT
The ICMS contains the complete operations and

interfaces for achieving a job distribution within an inter-
cloud system. It offers the meta-brokering facility that
allows a wide dissemination of user service requests by
achieving de-coupling of users and cloud providers while at
the same time hides the complexity of the low level
infrastructure from the user. This vision is based on the
fundamental concept of the Internet network that allows
various intranets to interconnect with each other. This
permits clients of various ISPs to access a wide-ranging
service pool in which users utilize services offered by
different vendors, cloud providers etc.

This model involves a decentralized setting that aims of
handling unpredictability in an efficient manner.
Accordingly, the ICMS is considered to be fully dynamic as
the decision making process happens during the run-time

and not based on predefined choices. Fundamentally, the
ICMS assumes that various sub-clouds launch
communication by utilizing a meta-brokering interface that
is placed on the top of a cloud local-brokers (local-
decisions) and is empowered with a list of other known
meta-brokers. Various such interfaces are distributed in
different geographical locations and act similar to
distributed management systems. This is to say, undertaking
crucial choices on behalf of their local broker datacentre for
matchmaking requested and offered resources as well as
cloud debts. Following to that, the next section introduces
the algorithmic statement of the service (job) dissemination.
In advance, the policies regarding the scheduling and
allocation concepts of the ICMS are presented as well.

Let assume that there is one inter-cloud setting
composed by a number of interoperable sub-clouds each of
which is named as ca where ca���{c1, c2, …, ck}.
Individually, clouds comprise a number of datacenters dcab
where dcab � {dc1, dc2, …, dcl} that constitute the physical
location of the cluster of core resources. Further, each
datacenter contains a number of physical machines named
as habc hosts where habc ��{h1, h2, …, hm} in such way that
the computational capacity of machines integrates the
augmented cloud computational competency. In addition,
each datacenter dcab generates a number of local-brokers
lbrad � {lbr1, lbr2, …, lbrp} and assigns one local-broker per
user submission for managing the internal service
allocation and execution of a cloud ca. At last, each of the
hosts generate or instantiate a number of VMs for
sandboxing the service requirements. Each vmabce � {vm1,
vm2, …, vmr} represents the virtualized part of a datacenter
host (machine) that eventually contains and executes user
service submission.

Within such system, each datacenter local-broker lbrad
belonging to a datacenter dcaab generates a number of
meta-brokers mbrae � {mbr1, mbr2, …, mbrs} and assigns
one meta-broker per user submission and per local-broker
for managing the exchanging of information among all the
components (users, local and meta-broker). A user submits
to one meta-broker of a cloud that could have more than
one meta-brokers, depending on the experimental case,
however, the default configuration is that one cloud has
one meta- and local-broker. Usually the service life-cycle
encompasses a user that requests a service allocation that
contains a requirements specification. Then, it passes the
request to the meta-broker that could be defined as the
user’s personalized interface. The last one distributes the
request to interconnected meta-brokers that exists within a
public profile named as meta-registry by always aiming to
meet SLA specification. The last one is generated from the
requirements specification submission. The job then is
directly sent from meta- to local-broker and then to the
low-level infrastructure of the cloud datacenter. This is to
say that each job jt � {cl1, cl2, …, cly} is assigned to a
virtual machine vmabce that has been generated to a remote
host habc belonging to a cloud ca and its datacenter dcab.

For demonstrating that, figure 1 presents the
partnership scenario of 3 clouds named as clouda, cloudb,

66

cloudc that are sub-clouds of the ICMS. Specifically, a
user1 requests for resources (joba) by establishing
connection with a clouda. Then, clouda assigns to the user a
local-brokera and a meta-brokera. The aim is to differentiate
the internal procedures that are handled by the local-
brokera and the external procedures for requesting
resources from the inter-cloud that are handled by meta-
brokera. Each meta-broker encompasses a meta-registry
that is an address book of public meta-brokers trusted and
available to receive requests and send responses for
resource availability (e.g. meta-brokera and meta-brokerb).

Firstly a request is sending to local resources from
meta- to local-brokera. If the SLA is matched and resources
exist the local cloud executes the request. In a different the
request is send to the meta-brokerb and meta-brokerc

respectively, wherein each of which forward it to the
internal local-brokers (local-brokerb and local-brokerc) for
proceeding with matchmaking joba requirements and SLAa
for resource provisioning specification. If a meta-broker is
capable of performing the job only then it sends a request
back to the meta-brokera, that sends the job to the first
responding meta-broker. After that, the decision-making
process happened within the cloud (local-broker) and
hypervisor that chooses the resource to be utilized by
calling resource allocation and execution policies. The
resources are allocated in the form of a VM that generated
within a remote host of the selected datacenter. Finally, the
user instantiates the VM and executes the joba in a remote
sub-cloud.

Figure 1: The cloud service request distribution

V. THE INTER-CLOUD META-SCHEDULING
FRAMEWORK: ALGORITHMIC STRUCTURE

The ICMS is composed from a set of statement
algorithms that handle the details of the complete service
life-cycle and represent the enterprise architecture of the
inter-cloud. By splitting the whole development into sub-
phases, the study aims to the efficient management of the
dynamic and iterative processes. The ICMS is formed by a
total of four phases namely as a) the service request, b) the
service distribution, c) the service availability, and d) the
service allocation. During these phases various components
interact with each other (e.g. user, local-broker, meta-
brokers, datacenters, hosts, VMs) along with several
policies for decision-making processes (e.g. resource
availability, utilization models, hosts and VMs scheduling
and allocation mechanisms etc). Before that, we clarify the
requirements of the service as posed by the user in order to
determine the performance measures. Specifically, we
assume that at a preliminary stage the user cloud requests
for an infrastructure as a service (IaaS) cloud capacity that
encompasses software as a service (SaaS) characteristic.
Thus, the user requests for cores, CPU power, memory,
storage and bandwidth as well as controller (e.g. drives)
and platform specification (e.g. operating system).

The SaaS is defined by an average number of
instructions per program and cycles per instructions for
measuring the software requirements of the hardware
capacity (clock rate of host). This will eventually allow us
to determine the performance criteria of the various ICMS
entities. Thus, starting with the service submission, we
assume that the following scenario is taking place. A user
requests for a job (that is sandboxed to a VM) and can get
x of 1 (%) of the total augmented host capacity (x is
defined by the cloud administrator) of the datacentre and
requires executing a set of software (programs) with y

instructions, and CPI= z (e.g 300 cycles / 100 instructions
= 3) with clock rate w MHz (e.g. 25% of 4000MHz of Host
with single core). The CPI value considers the cycles per
instructions required from specific software. The
performance of the services is analogous to the
performance of the VM that executes the service and to the
overall latency till the service execution started. It should
be mentioned that the x% denotes the percentage of the
machine to be dedicated to the VMs. The rest will be
required by the host in order to operate in highly
performance rates.

Formula (1) presents the performance of the VM in
terms of execution time with regards to requirements posed
by the user for a request of a mono-processor VM.

 ���������� �
���	�
�	���

�������
� �

������

���	�
�	���
� �

�������

�����
����

Also the CPI represents the cycles per instruction count
and given by formula (2).

��� � �
����������

���	�
�	��������
 (22)

Formula (3) presents the performance of the VM for
execution time measures by considering a multi-processor

Local-brokera�

datacentera�
hosta1�

VMa11�
hosta2�

…�VMa12�
…�

cal b

tacenteradat
sta1

ho a2sta2

…
22VM

V
…

hoMa11
VM

…
a12

…
Ma12

cloud a�

Local-brokerb�

datacenterb�
hostb1�

VMb11�
hostb2�

…�VMb12�
…�

cal b

tacenterbrrdat
stb1

ho b2

ttacdat

stb2

…
22VM

V
…

hoMb11
VMb12

…
Mb12

cloud b�

Local-brokerc�

datacenterc�
hostc1�

VMc11�
hostc2�

…�VMc12�
…�

Local b

tacentercdat
stc1

hos c2stc2

…
22VM

V
…

hoMc11
VM

…
c12

…
Mc12

cloud c�

User1�

Meta-brokera�

Meta-brokerb�

Meta-brokerc�

1

eta-broker

Meta

Met

LocLoc

loud aa

LocLoc

loud bbrbrr

LL

loud cc

M

M

eta

MMM

Decision�
making�

Request�
remote�

availability�
(meta-brokerb, �
meta-brokerc)�

Request local�
availability�

(local-brokera))�

User
specification�

Request local�
availability�

(local-brokerb))�

Request local�
availability�

(local-brokerc))�

67

request. The h parameter demonstrates the time duration of
the VM leasing by the cloud user.

���������� �
��������	
�

�������
����

���������� �
�

�����
��

�

����������
 � h (33)

This includes the CPU and cores capacity as required by
the user in the user submission. For calculating the CPU
burst of the VM in formula (4), we add a coefficient value
to the overall user request for controlling further
experimental analysis. In addition, we multiply that value
with the number of cores for deciding the requested CPU
for a multi-processor system as in formula (3). Similarly,
we place a coefficient value for each of the computational
characteristics required by the user e.g. CPU (5) memory-
formula (6), storage-formula (7), bandwidth-formula (8).
The VMCount represents the VM quantity that shares
computational capacity.

����� � �
������� � ����������	

�������
�����

�������� � �
���������� � ����������	

�������
�����

��������� � �
����������� � ����������	

�������
�����

���� � �
������ � ����������	

�������
�����

Finally, the performance measure of a service is given
by formula (9) as follows.
��������������� � �������������� � ������������	��
� ������

The latency denotes the time that passes till the service
execution started. Relevant delays involve meta-brokers,
local-brokers, and hypervisors (host and VM allocation)
decision-making processes. At last the performance of the
service is non-relevant to the execution time of the service
as given by formula (10).

�������������	�
�� �
�

���������������	�
��
������

Similarly, we measure the performance of the VM as
given by formula (11)

�����������
� �
�

����	��������
�
������

For illustrating the aforementioned mathematical
formulas and for measuring the performance of a service
submission, we present a brief scenario case. A user
requests for a VM with 0.25 (25%) of host performance and
executes a set of programs with 100*106 instructions, and
CPI= 3 (300 cycles / 100 instructions) with clock rate 1000
MHz (0.25 of 4000MHz of Host with single core). The
performance of the VM is calculated as follows:

��������
� � ��� � ��� ��� ���� �
�

����
�
�

�

� ����������� ��������

Thus, the performance of the specific VM is calculated
by dividing 1 by the execution time, which is an equal to

3.33. If the total delay of the events from the user to the VM
is 10 then the execution time and performance of the service
is calculated as follows:

��������������	�
���� � ��� � �� � �������� �

��������	��	�

��� �
�

����
�� ������

At last, a useful computational metric for measuring
performance capacity of a job is the million of instructions
per second (mips) that are required by the user. This
demonstrates the application requirements and is utilized as
an indicator to the required CPU power by a user. In
addition, by using this metric we can compare user
specifications if required. Formula (12) shows how mips are
calculated.

����� � �
����������

���
� ����������

By having defined the initial requested performance
measures, then we present the actual algorithmic structure
of the ICMS framework. At last we present the metrics that
shows the performance of the algorithms with respect to
required as initially calculated by formula (8). The core
algorithms represent the service (or job) user submission
life-cycle to an inter-cloud setting.

A. The Service-Request algorithm
The algorithmic pseudo-code I demonstrates the job

(service) formation and request according to a user
specification for a cloud leasing case.
Algorithm I: Service-Request
Require: user_name: user identification or name
 user_OS: user operating systems
 user_platform user desired platform (intel)
 user_memory user RAM memory
 user_cores user desired cores number
 user_CPU_speed user CPU capacity
 user_H/D_controller user controller (e.g. CDROM)
 user_storage user storage capacity
 user_BW user bandwidth
 user_spec user specification on software
 user_instr user instructions
 user_CPI user cycles per instructions
 user_hours user usage duration
 user_deadline user scheduling deadline
 user_pri_level user priority level
 user_delay user delay value
 user_jobs user total jobs
 user_cloud user cloud selections
 user_profile user profile specs
 user_clock user required power
 current user dynamic event data
 jobi user job
 meta-brokern user linked meta-broker
 monitor_trace monitor log and traces
 tag user tag
 added_delay increasing delay figure
Methods: update_user_profile

(requirement(s))
updates the require parameter

 send(entity, event data): send request and data
 acquire(user, meta-

broker)
assign user a meta-broker

 monitor(job,
delay,user,mips)

monitor current data

68

 SLA(specification,
profile)

the SLA configuration of user

1: user_profile← (user_name, user_OS, user_platform, user_memory,
user_cores, user_CPU_speed, user_H/D_controller, user_storage,
user_BW, user_spec, user_instr, user_CPI, user_hours, user_deadline,
user_pri_level, user_delay, user_jobs, user_cloud, user_profile)

2: user_CPU_speed ← user_CPU_speed * user_cores
3: update_user_profile (cpu_clock)
4: mips ← user_CPU_speed / user_CPI * 1/106
5: for all user_jobs
6: current ← jobi, user_delay, user_spec, meta-brokern, user_name
7: acquire (user_name, meta-broker)
8: added_delay = added_delay + user_delay
9: SLA (user_spec, profile)
10: send (meta-broker, added_delay, current, SLA, tag)
11: monitor (jobi, user_delay, user_name, mips)
12: end for

Specifically, the Service-Request (I) algorithm forms the
user profile, creates the SLA according to specific job and
assigns a meta-broker to the user (that represents the user
interface). Furthermore, the algorithm calculates the
required CPU speed in accordance to the CPU cores and the
needed mips as an preliminary performance measure. At
last, for each of the user jobs the algorithm sends a request
to the meta-broker (each one after the other by allowing a
delay to pass) while the meta-broker acts reactively by
instantiating the Service-Distribution algorithm. During the
whole service life-cycle the monitor component keeps a log
of job scheduling traces for future usage.

B. The Service-Distribution algorithm
The Service-Distribution algorithm exemplifies the job

request exchanging among meta-brokers for large scale
scheduling. The aim is to request for capacity and
competency of inter-connected nodes (other meta-brokers)
in executing certain jobs (user profiles and data that are
send by the Service-Request algorithm) that cannot be
executed locally. In a different case (local execution) the
meta-broker forwards the job to the low-level local cloud
infrastructure. In addition, the decentralized and incomplete
knowledge of meta-brokers makes solution more flexible.
The following algorithmic pseudo-code II demonstrates
such procedure.

Algorithm II: Service-Distribution
Require: meta-broker_name: meta-broker identity
 meta-broker_delay meta-broker decision latency
 meta-registry list with linked meta-brokers
 added_delay increasing delay figure
 meta-broker_delay meta-broker latency
 res_meta-broker responding meta-broker
 req_meta-broker requesting meta-broker
 flag flag to control termination or

re-distribution
 count iteration counter
 num integer variable
Method: get(user_data) user sent data
 update(tag) update the tag value
 send(entity, event data): send request and data
 monitor(job,

delay,user,mips)
monitor current data

 process(meta-
broker_delay)

process of meta-broker decision
making time

 terminate(messages) terminate messages after the

selected meta-broker
 re-distribute jobs are redistributed
1: get (user_name, added_delay, current, SLA, tag)
2: process (meta-broker_delay)
3: added_delay ← get (added_delay) + meta-broker_delay
4: if get(tag) is user tag then
5: send (cloud, added_delay, current, SLA, tag)
6: monitor (jobi, user_delay, user_name, mips)
7: end if
8: if get(tag) is cloud tag then
9: for all meta-brokerinter � meta-registry
10: send(meta-brokerinter, added_delay, current, SLA, tag)
11: monitor (jobi, user_delay, user_name, mips)
12: end for
13: end if
14: meta-brokerinter→ res_meta-broker
15: if get(tag) is res_meta-broker then
16: send(bucket, added_delay, current, SLA, tag)
17: monitor (jobi, user_delay, user_name, mips)
18: end if
19: if get(tag) is req_meta-broker then
20: if flag → True then
21: update(tag ← user tag)
22: send(bucket, added_delay, current, SLA, tag)
23: monitor (jobi, user_delay, user_name, mips)
24: if count = num {default: 3} then
25: terminate_messages(meta-brokerinter)
26: else
27: terminate_messages(meta-brokerinter)
278: end if

The Service-Distribution (II) algorithm is based on tags
that are sending from one entity to the other. Initially, the
algorithm gets every job came from user(s) and processes it
for a delay. Then, it controls a message passing mechanism
presented in [2] for distributing jobs depending on the tag
value (initialized by various component). This includes the
following:

a) In case that the tag denotes a message came from
the user then it will be forwarded to the local cloud.

b) In case that the tag denotes a message came from
the local cloud then it will be forwarded to the inter-linked
meta-brokers (extracted from the meta-registry). Further to
this, the first responder that is capable of executing the job
gets the user profile for further delegation.

c) In case that the tag denotes a message that came from
the same meta-broker (after a circulation) then either re-
distributes the message or it terminates it and suspends the
job.

This completes the distribution case wherein requests
are spread among the meta-brokers relying in the meta-
registry list. In the case that the flag is set to true then each
job will be iteratively re-distributed till executed. However,
in the case of a continuously SLA mismatching the
algorithm keeps a counter that terminates the job after a
certain value of iterations; the default value is 3.

C. The Service-Availability algorithm
The Service-Availability algorithm is responsible for

primarily producing SLA matchmakings and secondly
directing a dynamic workload management. This is
particularly useful for large scale systems wherein various
requests are submitted in different times thus the system

69

requires to decide whether there is computational capacity
to execute or not. Thus, the workload management policy
implementer herein either allows a job to be forwarded for
execution into the low level infrastructure, or it is returned
back to the meta-broker for further dissemination (as
presented in Service-Distribution algorithm). Algorithm III
pseudo-code illustrates the Service-Availability procedure
by encompassing dynamic workload management concept.

Algorithm III: Service-Availability
Require: meta-broker_name: meta-broker identity
 cloud_delay cloud decision latency
 added_delay increasing delay figure
 cloud_SLA SLA defined by cloud
 user_profile user formed profile
 workload figure to current workload
 jobi job submitted by user
 host_capacity host augmented capacity
Method: get(user_data) user sent data
 send(entity, event data): send request and data
 monitor(job,

delay,user,mips)
monitor current data

 process(cloud_delay) process of cloud decision
making time

1: get (user_name, added_delay, current, SLA, tag)
2: process (cloud_delay)
3: added_delay ← get (added_delay) + cloud _delay
4: if get(user SLA) match cloud SLA and get(host_capacity) exists
5: for all jobi

6: get(user_profile(user_CPU, memory, storage, BW)) < workload [i]
7: workload [i++]← jobi
8: send (datacenter, added_delay, current, SLA, tag)
9: monitor (jobi, user_delay, user_name, mips)
10: end for
11: else
12: send (meta-broker, added_delay, current, SLA, tag)
13: monitor (jobi, user_delay, user_name, mips)
14: end if

The workload calculation is related with the current host
capacity in terms of CPU, memory, storage and bandwidth.
For instance the CPU augmented values is given by formula
12. For the rest resources the augmented value is
represented by the sum of the hosts memory, storage and
bandwidth.

���������	��
��� � ���� � ���������

�

������

��������

The Service-Availability (III) algorithm demonstrates
that jobs came to the cloud systems (into the local-broker)
are dynamically controlled for SLA matchmaking and
current workload and capacity of hosts. In the case that jobs
can be executed the algorithm forwards each one to the
datacenter for host and VM allocation. In any other case
requests are returned back to the meta-broker for
distribution. In any case the delay increase the job executing
waiting time.

D. Service-Allocation
The Service-Allocation algorithm demonstrates the VM

allocation policies and jobs execution that enclosed in VMs.
By default, jobs that arrive in the datacenter are selected for
execution according to a first come first served queue
system. This implies that a VM is instantiated or generated

for each request arrive first in the datacenter management
component named as hypervisor. The last one takes
decision for the following policies:

a) VM generation in a static or dynamic manner. This
includes that VMs are either generating from scratch or are
relying in an external storage and space are transferred
(migrated) to a cloud host for executing a request that has
been existed previously (in the form of a recorded VM).

b) Requests for VMs are organized in a deferred queue
that releases jobs after a criterion passes (e.g. after a number
of jobs, or after an interval).

At last the algorithm allocates a host portion and starts
the VM execution. The local-broker that has knowledge of
the local resource plan queue monitors this procedure. This
allows a dynamic (workload management decision is based
on current queues) and real-time scheduling (queues are
released after interval criteria) of jobs. It should be
mentioned that the default ICMS static algorithms include
the first come first serve, shortest job first, earliest deadline
first, and priority algorithms. Algorithm IV pseudo-code
demonstrates aforementioned procedure.
Algorithm IV: Service-Allocation
Require: select_VM_allocation_p

olicy
parameter selection of sharing
 policy

 select_queue parameter selection of queue
algorithm

 FCFS, SJF, EDF, PA static algorithms
 jobi user job
 user_profile user profile data as formed by

the meta-broker
 hypervisor_delay hypervisor decision latency
 dc_delay datacenter decision latency
 added_delay increasing delay figure
 key hash key for queueing jobs
 queue_lenght desired queue size for releasing

the queue
 interval desired time for releasing the

queue
 static, dynamic VM allocation policies
 workload parameter for current workload
Method: get(user_data) user sent data
 send(entity, event data): send request and data
 monitor(job,

delay,user,mips)
monitor current data

 process(hyper_delay) process of meta-broker decision
making time

 record(VM data) keep log of executed jobs
 sort(algorithm) scheduling algorithm fashion
 host_allocation(data) allocating host computational

resources
 exists(VM) checking whether VM rely in

a pool
 migrate(VM) transfer VM from pool to

datacenter
 process(hyper_delay) process of hypervisor decision

making time
 gen(metric) generate metric results
1: get (user_name, added_delay, current, SLA, tag)
2: select_VM_allocation_policy [static, dynamic]
2: select_queue [FCFS, SJF, EDF, PA]
3: for all jobi � queue[]
4: get (user profile)
5: added_delay ← get (added_delay) + hypervisor _delay+dc_delay
6: queue [key, jobi]
7: select_queue.sort(FCFS)

70

8: if queue_lenght>=s or interval=i then
9: if select_VM_allocation_policy = static
10: host_allocation(CPU,memory, storage, BW)
11: process(VM)
12: record(VM, jobi)
13: else if exists(VM) then
14: migrate(VM)
15: else
16: goto(line10)
17: end if
18: workload ← host_allocation(CPU, memory, storage, BW)
19: send (local-broker, workload)
20: monitor (jobi, user_delay, user_name, mips)
21: gen(throughput, utilization, turnaround, makespan, energy, cost)
22: end for

Finally, the Service-Allocation (IV) algorithm allocates
host resources and executes the job. At last the monitor
operation keeps a log of traces for each of the job
exchanging among entities.

VI. ALGORITHMIC METRICS
The monitoring procedure generates a number of

metrics by instantiating data generated from the whole
ICMS process as follows. Initially, the throughput value,
formula (13), of cloud includes the number of jobs that
matched and executed by the cloud.

���������	����� � � ����

�

�

�������

This affects the cloud utilization parameter, formula
(14) that calculates the number of jobs (percentage)
executed from the whole user(s) input.

����������	����� �
����������

�����������
�

�������������

The turnaround time for a job calculated by formula (15)
includes the execution time and the current delay on an
entity (e.g. turnaround time in meta-broker or VM).

������������� � �
�����	������
���
�
�

���
����������
����
�
�����

� �
		��	���������� � �

The makespan formula (16), demonstrates the sum-up of
the VM execution time plus the total delay due to service
dissemination.

����������� � ����	��
������� � ��������������������

Finally, energy efficiency measures are calculated by
formulas (17), (18) with respect to the host configuration on
watts, the usage of machine in terms of hours and the cost
per kilowatt per hour. The cloud administrator defines these
values prior the initialization of the ICMS.

�����������������	��� � �
�
������� � ���������

����
������

��	�����	���	� � ������	�
������
�� � ��������������

VII. EXPERIMENTATION AND SIMULATION USING SIMIC
The ICMS is implemented in the ‘Simulating the Inter-

Cloud’ (SimIC) toolkit [10], which is a discrete event
simulation framework that replicates an inter-cloud service
dissemination setting. Specifically, the ‘Simulating the
Inter-Cloud’ (SimIC) is a discrete event simulation toolkit

based on the process oriented simulation package of
SimJava. We consider our solution an alternative of the
CloudSim simulation framework [5] for achieving cloud
interoperability. Specifically, we implemented the SimIC
toolkit to allow experimentation on event exchanging
among components in terms of messages that are sending
among the system entities at different time intervals. Further
to this, SimIC compliments CloudSim as includes a variety
of meta-scheduling inspired characteristics for achieving
job dissemination, resource discovery services, dynamic
workload management, real time scheduling of jobs in VMs
and others presented in [10]. Specifically, the resource
discovery service has been extensively discussed in [8]. The
preliminary simulation study illustrates the performance of
the algorithm in terms of producing benchmarks of the
selected performance measures. For instance, the user
requests for a VM with e.g. 0.25 of 1 host performance and
executes a set of programs with 100*106 instructions, and
CPI (cycles per instructions) = 3 (300 cycles /100
instructions) in a machine with clock rate 1000 MHz (0.25
of 4000MHz of Host with single core). The performance of
the VM is calculated by formula (10).

For demonstrating the algorithms performance we
implement a scenario case of an inter-cloud that contains 4
sub-clouds with different SLA specifications. To this setting
we place 4 users that send 2 to 10 service requests. Each
time the ICMS algorithm distributed request according to
section V strategies. Table 1 shows a simple user
specification formation.

TABLE 1: USER SPECIFICATION FILES

User specification text files
Hardware Requirements Software Requirements

Username: u_ste_1
HostOS: Linux
Platform: Intel
Memory(GB): 2
CPU-cores: 2
CPU-speed: 3000
H/D-Controller: SAN
Storage-HD: 1000
BW: 1000

Username: u_ste_1
SW1: spec_1_cloud_1
Instructions: 1000000000
CPI: 3
Hours: 240
Deadline: 555
Priority: 4

Further to this we assume that user 1 SLA matches with

cloud 1 or cloud 4, user 2 with cloud 2, user 3 with cloud 1
or cloud 4, user 4 with cloud 1, cloud 2 and cloud 3. The
ICMS schedules and executes VMs by instantiating ready
made VMs from a list. Thus in this case we execute the
dynamic VM instantiation case. In addition, we run the
following simulation configuration: cloud 1 with 4 hosts
with different CPU-speed (host 1:1000 MHz, host 3:500
MHz etc.) and same rest resources (e.g. Memory is set to
10). The average delay among components is set to 10 ms.
and the counter for releasing jobs is set to 7. This implies
that after 7 jobs the queue will start execution of 7 VMs
concurrently. If the queue length is greater than 7 then the
system generates interval calls after 800ms.

The preliminary experimental analysis of the real-time
scheduler is very prospect (in FCFS queue) as the average
values of turnaround and makespan show a decreasing

71

trend. This implies that for increasing workloads the
algorithm distributes the jobs more efficiently by
considering the ICMS resource management criteria
(queuing jobs). In addition, the average value of VM
execution time, cost and energy slightly change during the
service dissemination, thus this does not affect the metrics.
Figure 2 demonstrates the performance of the four ICMS
algorithms.

Figure 2: The ICMS four algorithms in the SimIC

Similarly, we execute a dynamic workload management
(this time we use SJF algorithm) to illustrate the service
distribution when availability is low. Specifically, we
decrease the capacity of cloud 1 as we assume that there is a
fault case and the host availability is reduced notably.
Figure 3 illustrates the workload figures of the ICMS when
non-dynamic versus dynamic management is taking place.

Figure 3: The ICMS for non-dynamic vs. dynamic workload management

Figure 4: The job utilization for non-dynamic and dynamic workloads

Figure 5: The job performance rates (turnaround and makespan) and

trends for submissions 2 to 10.

It is apparent (figure 3) that the average execution time
is slightly decreased (from 189.3175 to 188.7017949) as the
ICMS allocate more resources on a different cloud. In
addition, the average turnaround and makespan are
increased as the number of job requests is increased,
however without affecting the VM execution performance.
Finally, Figure 4 shows the sub-clouds utilization figures
for both cases while figure 5 demonstrates the job variation
(2-10) performance for the 4 users inter-cloud submission
case study. The trend lines (polynomial) show that the
performance turnaround and makespan increase tendency as
the number of jobs gets bigger.

VIII. REMARKS
The study presents the ICMS a meta-computing inspired

solution for inter-clouds. The algorithmic solution optimizes
the submitted workloads by combining multiple brokers
into a single aggregated view, identical to distributed
resource managers. It should be mentioned that our work is
focusing on performance optimization of the IaaS inter-
cloud components, thus issues such as security, regional
cloud governance, pricing models etc. are considered out of
the scope of the study it self. The architectural design of the
inter-cloud meta-broker is totally decentralized and
dynamic by enhancing the decision making process for
service distribution and real-time job scheduling. Our
solution offers a modular structure of the whole user job
submission life-cycle by offering various advantages and it
is implemented in SimIC. The inspiration of the design of
the core entities of the SimIC came from the CloudSim
framework [5], however our classes have been re-designed
to compliment additional features as follows.

a) The meta-brokering distribution works on a real-time
response model wherein certain data is exchanged
during run-time among collaborated meta-brokers.
This minimizes the information exposition and
increases dynamic-ness.

b) The transparency of the system is increased due to the
de-coupled functionality of the system. This includes
that users are not de-attached from their desired cloud
provider, but the last one could search further to
disseminate the service request to interlinked partners.
In addition, meta-broker expands the service elasticity

��

��

��

��

��

��

����

����

����

����

�����

�����

�� �� 	� ��
� �� �� �� ��

E
ne

rg
y

C
on

su
m

pt
io

n
-

C
os

t
le

ve
l�

Si
m

ul
at

io
n

T
im

e
(m

s.
)�

Jobs (2-10)�

ICMS in SimIC�

Avg turnaround� Avg exec_time�
Avg makespan� Avg energy�
Avg cost�

�

��

��

��

��

���������������
����������	��

����	�
������

����

��������

��������
�������

���� ��

 ������

Si
m

ul
at

io
n

T
im

e
(m

s.
)�

Dynamic Workload Management�

Cloud1~CPU: 1800� Cloud1~CPU: 800�

���

����

����

����

����

����

Utilization
Cloud 1�

Utilization
Cloud 2�

Utilization
Cloud 3�

Utilization
Cloud 4�

�
��
��
��

�	

�
�
��
	�
��
�

Dynamic Workload Utilization �

Non-dynamic (Plentful resources)� Dynamic (Limited resources in Cloud 1)�

�������

�������

�������

�������

�������

�������

����	��

����	��

	� ��
� �� �� �� �� �� ���

P
er

fr
om

an
ce

 L
ev

el
�

Jobs (2-10)�

Performance rates and trends�

Performance
Turnaround�

Performance
Makespan�

Poly. (Performance
Turnaround)�

Poly. (Performance
Makespan)�

72

from the capacity of a cloud to the capacity of the
inter-cloud, thus offering an almost infinite elasticity.

c) Scalability of service executions increased due to the
large number of resources and capabilities. This
encompasses various VMs that different clouds could
instantiate according to demands. Further to this,
heterogeneity is also considered due to the variety of
datacenter resources and services.

d) The realization of the ICMS happens in a partial and
decentralized knowledge of the resource pool. This is
because each meta-broker has a complete knowledge
of the local datacenter but a transient and incomplete
knowledge of the remote resources.

e) Meta-brokers aim of improving the efficiency of
service execution for both service cloud providers and
cloud consumers. This could offer an energy aware
solution wherein history records of previous
successful service executions.

f) Trough static and dynamic instantiation of VMs we
aim of adding value with regards to history records.
Specifically, ICMS allows the decision on whether to
generate a new VM (static) or migrate one (dynamic)
from a storage device. The decision is based in
historical delegation records.

g) The re-active management of heterogeneous service
submissions in the form of VMs extends inter-cloud
capabilities. ICMS allows requests for heterogeneous
resources to be allocated according to SLAs.

IX. CONCLUSIONS
This work presents the initial study of the ICMS

algorithmic structure for defining the most important
internal procedures of the inter-cloud. Specifically, the
inter-cloud facility disseminates the request for service by
sandboxing operations into VMs that belong to an
interoperable sub-cloud. The ICMS is composed from a set
of sub-scheduling heuristics that aim to a) request and
accept connection with remote sites, b) distribute requests
within that system, c) search for available resources, d)
allocate the resource based on a criterion, e) execute a VM
within this resource, and f) monitor the whole procedure for
keeping performance measures. The primary experimental
analysis shows a prospect performance figure of the
workload management.

The future steps of our research include the realization
of the VM migration strategy for dynamic VM instantiation.
Principally, we will further improve the initial ICMS
algorithms as well as we will expand functionalities (e.g.
further optimize service distribution algorithm). In addition,
we aim to use the SimIC in order to further explore
benchmarks and results extracted from a typical cloud and
inter-cloud. This will produce further experimental analysis
in order to support our work. An important concept to
develop is the sharing of the host computational capacity
among the VMs. The default ICMS model implies that VMs
are allocated as far as computational power exists.
However, in the future we will further develop our solution
in order to accept more advanced policies (including the
exploration of migration issues). It should be mentioned that

we employ ICMS in the SimIC toolkit for realizing
algorithmic structure (four algorithms). In this setting, we
are developing the whole solution as well as we have
executed the formulas (metrics) of the aforementioned
sections. The SimIC is not yet available to the general
public as it still under implementation. However, modellers
that require executing SimIC scenarios are encouraged to
communicate with us.

REFERENCES
[1] Bessis, N., Sotiriadis, S., Cristea, V., Pop, F., Modelling

 Requirements for Enabling Meta-Scheduling in Inter-Clouds and
Inter-Enterprises, Third International Conference on Intelligent
Networking and Collaborative Systems (INCOS 2011) , Nov 30 -
Dec 2 2011, Fukuoka, Japan. pp. 149-156

[2] Bessis, N., Sotiriadis, S., Pop, F. And Cristea, V. (2012). Optimizing
the Energy Efficiency of Message Exchanging for Job Distribution
in Interoperable Infrastructures, 4th IEEE International Conference
on Intelligent Networking and Collaborative Systems (INCoS-
2012), September 19-21, Bucharest, pp. 105-112

[3] Bessis, N., Sotiriadis, S., Xhafa, F., Pop, F. and Cristea, V. (2012).
Meta-scheduling Issues in Interoperable HPCs, Grids and Clouds,
International Journal of Web and Grid Services, Volume 8, Issue 2,
Inderscience, pp. 153-172.

[4] Buyya, R., Ranjan, R., and Calheiros, R. N., (2010) InterCloud:
Utility-Oriented Federation of Cloud Computing Environments for
Scaling of Application Services, Algorithms and Architectures for
Parallel Processing (2010), Volume: 6081/2010, Issue: LNCS 6081,
Publisher: Springer, pp. 13-31.

[5] Calheiros, R., N., Ranjan, R., Beloglazov, A., De Rose, C., A., F.,
and Buyya, R. 2011. CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of
resource provisioning algorithms. Softw. Pract. Exper. 41, 1
(January 2011), pp. 23-50.

[6] Stavrinides, G., L., and Karatza, D., H., 2010. Scheduling multiple
task graphs with end-to-end deadlines in distributed real-time
systems utilizing imprecise computations. J. Syst. Softw. 83, 6 (June
2010), pp. 1004-1014.

[7] Sotiriadis, S., Bessis, N., Xhafa, F., and Antonopoulos, N. 2012.
From Meta-computing to Interoperable Infrastructures: A Review of
Meta-schedulers for HPC, Grid and Cloud. In Proceedings of the
2012 IEEE 26th International Conference on Advanced Information
Networking and Applications (AINA '12). IEEE Computer Society,
Washington, DC, USA, pp. 874-883.

[8] Sotiriadis, S., Bessis, N. And Kuonen, P. (2012). Advancing Inter-
cloud Resource Discovery based on Past Service Experiences of
Transient Resource Clustering, 3rd International Conference on
Emerging Intelligent Data and Web Technologies (EIDWT-2012),
September 19-21, Bucharest pp. 38-45

[9] Sotiriadis, S., Bessis, N. and Antonopoulos, N. (2012).
Decentralized Meta-brokers for Inter-Cloud: Modeling Brokering
Coordinators for Interoperable Resource Management, 9th
International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD'12), May 29-31, Chongqing, May 29 – 31 2012,
pp. 2475-2481.

[10] Sotiriadis, S., Bessis, N., Antonopoulos, N. SimIC: Simulating the
Inter-Cloud, The 27th IEEE International Conference on Advanced
Information Networking and Applications (AINA-2013), Barcelona,
Spain, March 25-28, 2013

[11] Sotiriadis, S., Bessis, N., Huang, Y., Sant, P. And Maple, C. (2010).
Defining Minimum Requirements of Inter-collaborated Nodes by
Measuring the Weight of Node Interactions, 4th International
Conference on Complex, Intelligent and Software Intensive Systems
(CISIS-2010), 15th-18th February, Krakow, ISBN: 978-0-7695-
3967-6/10, pp. 291-298.

73

