
Modelling Requirements for Enabling Meta-
Scheduling in Inter-Clouds and Inter-Enterprises

Nik Bessis1, Stelios Sotiriadis1, Valentin Cristea2, Florin Pop2

1 School of Computing & Maths, University of Derby, Derby, United Kingdom
2 University “Politehnica” of Bucharest, Bucarest, Romania

1 (n.bessis, s.sotiriadis)@derby.ac.uk, 2(valentin.cristea, florin.pop)@cs.pub.ro

Abstract— Cloud computing provides a promising paradigm
for the deployment and utilization of online resources
including hardware and software services by Internet users. In
such an e-infrastructure environment, the scheduling of user-
defined tasks is always considered as a complicated part of the
overall system modelling. Specifically, in the case of inter-
clouds and inter-enterprises scheduling optimization is
fundamentally important for achieving the best possible
capacity in terms of resource utilization. Thus, existing
approaches that consider system dynamics, interoperability
and heterogeneity issues become important aspects for
providing advanced scheduling decisions. In this work, we
survey some highly dynamic meta-schedulers that are suitable
for enterprises using grids and/or clouds. Our intention is to
elicit the characteristics and produce a model encompassing
the architectural requirements that will enable high meta-
scheduling performance in inter-cooperative e-infrastructures.

Keywords: Cloud; Inter-clouds, Inter-enterprises, Federated
Clouds, Meta-schedulers, Community Aware Scheduling

I. INTRODUCTION
During the last decade, the cloud computing paradigm

became one of the most promising technologies for
achieving distribution of resources in a wide area scale.
However, as today’s trends tend users to challenge the cloud
elastic services, a significant approach namely inter-clouds
[7] that enables inter-cooperation between clouds, has been
introduced as to improve the quality of service offered by the
capacity oriented clouds. Specifically, authors in [1] discuss
the inter-cloud vision and suggest that the major aim is to
facilitate the auto-scaling of resources among various cloud
infrastructures for exchanging services.

In parallel to our previous work [15] we have highlighted
the need for an aggregated view of sharing cloud resources in
order to enable inter-cloud provision. In particular, the work
[1] suggests that the herein highlighted shortcoming (the lack
of a no service coordinating resource sharing among separate
clouds) reduces considerably the quality of service while at
the same time increases the administrative cost (maintenance
and support). A notable example is the case of Amazon, a
cloud leader vendor [15], which cloud data-centres don’t
support collaboration with each other and leave users with
the option to select their desired cloud sub-system based on
their geographical location; this may decrease the quality of
service and scalability.

Recently, some cloud providers aim at enabling an inter-
cloud provision, by utilizing a pool of distributed cloud
resources in order to improve their quality standards.
Specifically, joint clouds form a pool of collaborated sub-
clouds or sub-resources (e.g. grids) similar to a dynamic
distributed system. Within such an e-infrastructure, one of
the most fundamental aspects, which emerges architectural
design issues is the scheduling algorithm [14] that deals with
the selection of resources considering the characteristics of
the actual system (centralized or decentralized) as well as the
requirements of the desired scenario.

In general, various taxonomies of schedulers have been
introduced, including schedulers for operating system (OS),
high performance computing, parallel and meta-computing
[17]. Among all these, the task of scheduling in the meta-
computing has been proven to be the most complex [2][10]
mostly due to the involvement of a mixture of local resource
management systems (LRMS). In addition, unforeseen
situations, i.e. the highly dynamics (fluidness) of the meta-
computing environment in which resources can join and
leave unexpectedly, can lead to increased complexities [14].

In [15] we have surveyed a number of highly dynamic
schedulers applied within meta-computing environments, i.e.
grids. In this paper, we aim to identify the requirements for
an inter-clouds meta-scheduler, which will enable higher
performance in terms of the quality of service to be offered
by the involved clouds. Within this context, Section II
presents the need for the inter-cloud meta-scheduling, and
Section III introduces the problem statement. The rest of the
paper is organised as follows. Section IV discusses the
functionality of the dynamic algorithms and Section V the
model of requirements drawn from the literature study.
Finally, Section VI presents the conclusion and the future
work towards to inter-cloud meta-schedulers.

II. THE NEED FOR INTER-CLOUD META-SCHEDULING
The cloud paradigm share several commonalities with

other technologies including grid and utility computing by
combining their most important characteristics in order to
offer a variety of services i.e. infrastructure as a service etc.
Clearly, the key features of each one of them contribute
towards additional complexity when considering a (meta-)
scheduling approach [17]. For example, the grid
characteristic of resource geographical distribution and the
use of virtualization technology in utility computing

2011 Third International Conference on Intelligent Networking and Collaborative Systems

978-0-7695-4579-0/11 $26.00 © 2011 IEEE

DOI 10.1109/INCoS.2011.120

149

highlight new requirements for clouds. Similarly, in case of
inter-enterprises of cloud-to-cloud and/or cloud-to-grid, also
known as inter-clouds, new requirements are required for
achieving optimum scheduling performance.

In particular, the need for an inter-cloud meta-scheduling
approach has been introduced in [15], which provides a
detailed taxonomy of a number of meta-approaches for
identifying requirements, characteristics and classify
solutions in terms of most and least suitability for inter-
clouds. Specifically, we have highlighted the growing
interest in inter-cloud computing which includes endeavour
of the biggest vendors in the area such as HP, Intel, Yahoo,
etc. [1]. However, their innovative efforts have led to the
establishment of a federation of collaborated clouds with
joint initiatives. The inter-cloud vendor-oriented approach
has a specific control plane rather than of a setting based on
future, sustainable standards and open interfaces.

Having said that, inter-clouds can be considered as a
wide research effort in which issues such as resource
discovery, allocation and scheduling are quite the most
important. In this work we only focus on the job scheduling
aspect for distributed environments (grids and clouds) so
deliberately, we aim to identify schedulers that are easy to
adopt within inter-clouds e-infrastructures.

However, one of the most important criterions for our
selection is the dynamics of a system as the unpredictability
of resources is high [8][11][13] thus, the dynamic-ness of a
meta-scheduling approach forms the basis of our research.
Specifically, static-ness in scheduling is defined as the
approach in which all the decisions done prior to the
execution of the schedule. On the other hand, dynamic-ness
allows decisions during the execution time and thus, it
enables the consideration of unforeseen situations that may
occur in large-scale, fluid e-infrastructures. Several static
schedulers have been discussed in [2][15] yet in the most of
the approaches these have used as the basis for the
development of more complex dynamic schedulers, which
are discussed in [8][10][17]. In the following section, we
describe the problem statement of the present study, which is
based on the dynamically changed nature of an inter-cloud e-
infrastructure environment.

III. PROBLEM STATEMENT
During the past years scheduling within uncertain

environments in terms of scale (e.g. grids) has been
extensible studied. A great variety of scheduling algorithms
(centralized or distributed) have been proposed by [3][4][5],
aiming to a more flexible and efficient operation. However
[16] suggest that when things come to scenarios and use-
cases aiming at testing a realistic solution it turns to be
impossible to design such tools, mainly because of important
characteristics such as support for dynamic scheduling are
not considered. In addition, the clear problem is that the
actual requirements are not known in advance, which may
cause a change of the initial conditions and chosen
parameters. Thus, the strategy for developing such solutions
should be fully automated, and flexible in terms of
considering dynamic metrics as much as possible. In this
work, we aim to identify those metrics on the basis of a

literature study about two meta-scheduling approaches. In
particular, those metrics are closely related to the distributed
meta-scheduling theme as is concerned with the distribution
of jobs across independent sites in distinct administrative
areas. The decentralization aims to overcome the common
problems such as the single point of failure and the
bottleneck for the cloud environment as the central instance
has a solely responsibility for handling all jobs and request.
Thus, we select the distributed meta-scheduling approach
where various LRMS deploy their own meta-scheduling
strategies for job delegations and executions. We continue
the present study by discussing the most common meta-
approaches for identifying possible inter-clouds algorithms.

IV. THE ALGORITHMS
In [15], we have presented a state-of-the-art review of 18

meta-scheduling technologies. The purpose was the analysis
of possible solutions for determining meta-scheduling to
inter-enterprises including inter-clouds. Furthermore, we
have discussed the inter-cloud needs and requirements and
we have correlated the characteristics of meta-schedulers to
inter-cloud requirements. Throughout the review of the
functionality of approaches, we have recognized the need,
which eventually leads to the modelling of a forthcoming
and novel meta-scheduling algorithm suitable for inter-
clouds. Thus, we have concluded that in particular, 6 works
out of 18 have been identified as the most suitable candidates
to used in an inter-cloud scenario (readers are pointed to
[15]), while 2 out of 6 presented in [13][8] offer the most
related significant advantages. This suggestion has been
concluded after a correlation of current meta-approaches
characteristics to the future inter-cloud requirements.

Different from all others, both solutions [13][8], offer
decentralized meta-schedulers that evaluate static and
dynamic scenarios of total and partial knowledge of the
resource pool and use previous recorded history data of work
delegations to improve their scheduling decision. In addition,
experimental results have shown significant improvements
of the selected benchmarks when the dynamic scenarios are
applied and compared with the static and non-dynamic ones.

In particular, [13] presents four scenarios of decentralized
settings in which meta-schedulers have partial and full
domain knowledge in dynamic job submissions without
information exposing. Also, this approach offers advance
reservation mechanism and transparent user mapping while
compares results and selected benchmarks which shows a
remarkable meta-scheduler performance when an
unpredictable situation occurs.

Figure 1 demonstrates the relational model of the most
important features that are treated as metrics for defining the
dynamically changed attributes. In brief the dynamic
objective, which represents the actual jobs submissions,
happens in a fully decentralized environment which uses
history records without information exposing. Testing
includes scenarios of fully and partial knowledge of the
resource pool, as well as deployment of advance reservation
mechanisms. In parallel to [13], [8] presents an advanced
solution that evaluates four scenarios of centralized and
decentralized approaches in full and partial resource pool

150

knowledge scenarios. Specifically, [8] suggests a model for
improving [13] functionality by incorporating real-time
processing of information. The aim herein has been changed,
as it is to achieve a globalized performance and not with the
view of improving each individual participant benchmarks.

FIGURE 1: DYNAMICS OF FEDERATED CLOUDS

In addition, instead of advance reservations a re-
scheduling concept is introduced. The authors conclude that
an overall improvement of the system performance happens
when considering the dynamics as the meta-scheduler.
During re-scheduling, real time information exchanging
occurs without internal data exposition. Figure 2 illustrates
the dynamics of the [8] meta-scheduling algorithm by adding
extra features to the [13] solution.

FIGURE 2: DYNAMICS OF THE CASA

The following section presents a detailed discussion of
the functionality of a) the Federated Grid Algorithm [13] and
b) the Community-Aware Scheduling Algorithm (CASA) [8]

with the view to identify the design issues and modelling
requirements for inter-clouds meta-schedulers.

A. The Federated Grids Algorithm
This approach provides an alternative to the centralized

solutions by proposing the deployment of a meta-scheduler
on the top of each grid infrastructure (LRMS) within a
federated grid. Next, we discuss the algorithm principle, the
objective algorithms (scheduling algorithms), the design and
implementation issues, as well as the results from the
compared benchmarks.

1) The algorithm principle
[13] presents a meta-scheduling strategy for federated

grids as the evolution of the grid computing. Particularly,
the work aims to the expansion of the grid functionality as
to allow resource sharing among several grid infrastructures.
The model is a generic decentralized approach which places
meta-schedulers on the top of each grid system. In their
study, authors propose four algorithms to compare the
performance of the different grids forming a federation.

Their decentralized scheduling approach includes that a
meta-scheduler will be placed on the top of each grid
infrastructure that implements appropriate algorithms. Also
the users mapping will be fully transparent. Each of the four
algorithms of the meta-scheduler aims to increase the
performance while reducing the make-span. Finally, the
mapping of jobs to resources doesn’t require configuration
information. For implementing each of the mapping strategy
the approach use the GridWay [13] a meta-scheduler for
grids. Specifically, a performance model as described in
[13] is applied to the GridWay to obtain results from the
objective functions (makespan and performance of resource)
of each of the four algorithms.

The GridWay’s current scheduling policy implements
the Normal algorithm. It is a simple mapping policy that
maps a number of DISPATCH_CHUNKS of unscheduled
jobs to internal or external resources each a time of
SCHEDULING_INTERVAL in seconds. The algorithm
maps the next job to the first internal resource, in the case of
no availability the job is mapped to an external. This basic
functionality is relying upon the decision of available free
nodes without considering past performance data of
participating nodes. Then, the algorithm uses a migration
control to check if the job will start its execution before the
SUSPENSION_TIMEOUT value is exceeded, in that case
the job is scheduled again. The authors examined the effect
of the algorithm and claim that this is a simple grid
scheduler that doesn’t provide significant results under the
selected scenario. The following presents the four mapping
algorithms.

2) The Objective Algorithms: SO, DO, SO-AS, DO-AS
Herein we present an elaborated discussion based on the

four objective algorithms discussed in [13] including static
and dynamic objectives as well a combination of each
approach to the advance scheduling strategy.

a) Static Objective (SO)
The variable that denotes the number of jobs to be

submitted to each of the grid infrastructure is called an
objective, and it aims to maximizing the throughput of

151

internal resources while at the same time the make-span
value remain untouched.

The SO algorithm as denoted by its name is static, thus
performance measurements are obtained in the form of
linear equation for each participant by training the testbed
using the Normal algorithm. Once they have those results,
they decide the number of jobs that should be submitted to
each participant, in an off-line fashion (total domain
knowledge), for increasing the throughput of internal
resources without increasing the makespan. Then the
algorithm is updated and executed. Specifically, the SO
maps DISPATCH_CHUNK of unscheduled jobs to internal
resources every SCHEDULING_INTERVAL seconds. If
there aren’t any available internal resources the SO schedule
jobs to external resources.

b) Dynamic Objective (DO)
In this case the DO calculates objective dynamically

instead of the off-line procedure of the SO algorithm. In
particular, the DO algorithm first determines the
performance of each internal resource. Then, it calculates
the linear relations of the whole federated grid by viewing it
as an aggregation of participant grids. Specifically, the DO
algorithm uses the jobs delegations to internal resources
(previous history records) to calculate the number of jobs to
be submitted to external resources. Finally a new event is
programmed for updating the next objective.

The advantage of DO, when compared with SO, is that
the first one can be easily be adapted to a large scale and
complex grid while at the same time it behaves similar to
SO, by mapping a number of DISPATCH_CHUNKS of jobs
to resources every SCHEDULING_INTERVAL seconds.

c) Static Objective - Advanced Scheduling (SO-AS)
The SO-AS combines the static objective and the

advance scheduling strategy by queuing jobs to target
resources in advance without waiting for free resources. In
this way, the latencies are avoided while at the same time
the performance is increased. In particular, similar to
aforementioned objectives the scheduler maps a number of
DISPATCH_CHUNKS every SCHEDULING_INTERVAL in
seconds. So, firstly, the SO-AS algorithm determines what
jobs of the DISPATCH_CHUNKS are internaljobs and
creates a number called toIntenal. This number is
proportional to the number of jobs that the SO algorithm
decides that have to be submitted to internal resources.

After that, the next job is mapping by the AS which
checks if the scheduledjobs keeps less than the
DISPATCH_CHUNK of jobs. In the case of an internal job
and available internal resources the job is scheduled to one
of them. The scheduleToInternalResource queues
to a limit of number of nodes multiplied with a max running
resource factor. In the case of an external job the algorithm
avoids the situation in which the federation of grids can
receive jobs from another participant and schedules jobs to
internal resources. Finally a new event is programmed for
the next objective update.

d) Dynamic Objective - Advance Scheduling (DO-AS)
The DO-AS algorithm is similar to the SO-AS with the

only difference that calculates the new objective

dynamically. Also the advance scheduling strategy denotes
that the scheduler doesn’t wait for a free node and queues
jobs in advance in the target resources.

3) The design, the implementation and the test scenario
of the objective algorithms

The authors implement five versions of the
GridWaySim that differ in the mapping strategy namely the
Normal, So, DO, SO-AS and DO-AS and perform
simulations using the GridSim testbed. All the
aforementioned versions have the same configuration, the
same number of users that submit their jobs to the same
time to the same broker.

The test scenario contains two grid resources, the DSA
(Distributed Systems Architecture) and the LCG (LHC
Computing Grid). DSA represents the grid group of the
“Universidad Complutense de Madrid”, while LCG testbed
represents the “Large Hadron Collider (LHC) Computing
Grid”. In this scenario, a DSA internal user could submit a
job to the DSA GridWay broker, and the job can be either
executed by the DSA interval resources or the LCG external
resources. Similarly jobs submitted to the Globus WS-
GRAM interface of the LCG GridWay are from external
users. They demonstrate in this scenario a common situation
on which at the same time use its internal resources.

4) 7.2.4 Simulation Entities, Parameters and Results
At the simulation time the GridWaySim generates three

users, two GridWay meta-schedulers, one DSA testbed, one
LGC testbed and one Workload trace. Specifically, the two
meta-schedulers are required because the scenario
demonstrates the inter-connection of the DSA and the LGC
Grid, so one meta-scheduler for each grid is required. The
testbed resources are represented in the test scenario and
they are called DSATestbed and LCGTestbad respectively.
The actual experiment is a collection of 550 equal jobs,
which as suggested by [13] the sample represents a medium-
sized grid experiment. The authors discuss their
experimental results based on the level of saturation of the
LCG resource, when at the same time knowing the number
of free available PEs. Thus three users submit their
experiments as follows. User_0 submits the experiment to
an ideal scenario of low saturation with free available PEs.
User_1 submits the experiment to a medium saturation
scenario. Finally, User_2 submits the experiment to a high
saturation scenario of limited number of free available PEs.
Then the authors present the number of jobs executed on the
three scenarios, which represent the objectives of the
experiments. In the case of different algorithm the
objectives are not similar mainly due to the off-line
functionality that offers a full view of the performance of
the resources as happened in the case of SO and SO-AS. On
the other hand, in the case of DO and DO-AS, the
knowledge of the same performance is partial. At last, DO
and DO-AS differ in the advance scheduling strategy, which
doesn’t wait for free nodes at the time of job submission.
The results extracted from [13] follow:

a) The Normal and DO algorithms behave normally and
as saturation is increased more of the jobs are executed in
DSA.

152

b) SO-AS and SO show a different behaviour and they
produce poor results because of the “long periods on which
single jobs cannot be executed in LCG”.

c) DO-AS behave also differently and calculates very
similar objectives for three levels of saturations.

Then the authors present the completion time for each
job to each level of saturation and with this way they offer a
global view of the five algorithms as follows:

a) Normal, SO and DO submit jobs when there are
available nodes thus when saturation is increased they need
more time for completing the experiment.

b) DO-AS queues jobs in advance without waiting for
free available nodes, thus authors conclude that the
performance is more consistent as the results show almost
identical because the queue time in the LCG is practically
null.

c) The most notable results are from User_2 which the
queuing of jobs is done in advance without waiting for free
PEs.

d) Finally the authors suggest that the combination of
the performance model with the scheduling in advance
reveal the best mapping performance.

B. The Community-Aware Scheduling Algorithm
The Community-Aware Scheduling Algorithm (CASA)

is a two phase scheduling solution which contains a set of
five heuristic sub-algorithms. The functionality of the
CASA is elaborated on the basis of work shown in [8]
starting with the algorithm principle, the sub-algorithms
explanation, the simulation environment, and the results.

1) The algorithm principle
The CASA assumes that a number of N nodes exists in a

grid environment, wherein N = {n1, n2, …, nn}, in
which some of them have job submissions. Within this
setting the nodes that assign jobs to others are called
initiators and the nodes receiving requests are called
responders. Each time a job called j ,, is sent from an
initiator � to a responder the following characteristics are
considered:

a) The required processing elements (PEs) including
CPU, memory, etc. of the job denoted as jpe

,,
b) The estimated execution time denoted as jlength

,,
c) The estimation of the processing elements, also known

as million of instructions per second denoted as jmips

,,

d) The job load calculation based on previous
assumptions calculated by the formulae load = jpe

, ,

jlength

, , j
mips

,,

The CASA also considers the unpredictability of the grid
system by highlighting that the dynamics such as, the local
job submission distribution, the local job characteristics; the
job status and resource usages are impractical to be
distributed. Thus, a more advanced solution is to retrieve
required information at the runtime from real workload
traces as done in CASA. In particular, the algorithm is a
phase-by-phase solution which consists of two sub-
scheduling algorithms namely as the job submission phase
and the dynamic scheduling phase. Starting with the job
submission phase the algorithm decides the strategy for
submitting jobs to candidate nodes. Specifically the

following steps contain a step-by-step explanation of the
submission phase functionality.

a) A node na receives a job j ,, from the local user na is
the requester and generates a request message using the
algorithm hrequest

b) The job characteristics (PEs, heterogeneity) are
including in the message an interface itneighbors(na) is
invoked in order locate a list with discovered remote nodes
the request message is distributed to each of the remote
nodes of the list each responder node receiving the
request message invokes the haccept algorithm to decide
the job execution or not including node’s capabilities and
administrative characteristics.

c) In the case that delegation is decided, an accept[R]
message accR

, ,, ,, is generated and sent back to the requester
the accept message contains the estimated response time
of the responder node n requester collects all the
accept[R] messages and invokes the hassign to select the
remote node for delegation.

d) The algorithm hassign adopts a probabilistic approach
for selecting nodes without greedily selecting the best ones
which will lead to starvation.

e) Finally the node n is selected and an assign message is
send by the hassign which encloses all the related data.
Next, we present a detailed discussion of the sub-algorithms.

2) The sub algorithms
The dynamic scheduling phase is a complementary

action for adapting to dynamic and unpredictable changes of
the system. Specifically, each node n� in the grid contains a
local queue with jobs submitted either from the local user or
remote nodes. First the hresched algorithm is invoked in
tinterval intervals to find the jobs with the longest waiting
times of the local queue. Afterward the interface
itneighbors(n) will be invoked to find a list with remote
nodes and the hresched algorithm generates an inform
message inf ,, which contains the rescheduled job
including its characteristics (PEs, estimated execution time,
job profile). After that the responder node receives the
message and invokes the h’accept algorithm to decide
whether or not the job delegation will be accepted. The
h’accept works similar to the haccept, except one difference,
there should be worthwhile benefit from rescheduling. If the
n accepts the job an accept[I] message accI

, ,, ,, is send
to n . The n collects and compares the accept[I]
messages for job ,, and selects the appropriate node for
rescheduling the job.

In the following we detail the CASA sub-heuristic
algorithms namely as hrequest, haccept, hassign, hresched, and
h’accept. The hrequest algorithm is launched every time a local
user submits as job called job , to a node . At this point
the job submission phase is initiated with the aim of locating
the proper node from the scope of the overall grid.
Specifically, the itneighbors interface is invoked in order to
fetch a list with the addresses of remote nodes. Then the
hrequest sends a message with the characteristics of the job,
including, jpe

,, , j
length

, , j
mips

, to each remote node.
The haccept is invoked in each remote node and represents

the delegation acceptance algorithm. Then, jobs descriptions

153

are matching with the remote resources characteristics, e.g.
heterogeneity and number of processing elements required.
Finally, the responder generate an accept[R] message
along with an estimation of the execution time is send back
to requester node.

The haccept calculates the estimated job response time by
summing up the total time of the queue and the estimated
time of the job. The local job queue contains a sequence of
already received nodes waiting for execution. The shadow
job queue contains a sequence of already accept[R]
messages probability along with the job characteristics
profile. The hassign algorithms selects the responder node
which offers the shortest response time and delegates the
job , to the node. Before that, several accept messages
have been received from remote nodes. In the case that the
same nodes are greedily selected from the requester then a
probabilistic procedure happens.

The hresched algorithm for checking periodically which of
the already queues jobs could be reassigned to other nodes
for improving the overall performance and grid resource
utilization. The basic idea is to select the appropriate jobs,
which are already queued to different nodes and re-assign
them to various nodes.

The h’accept is the algorithm for requesting rescheduling
acceptance from the remote nodes. Specifically, when a node
receives a reschedule request estimates the response time for
each job waiting in the local queue.

3) The simulation scenarios and the benchmark results
The CASA scheduling sub-algorithms has been

evaluated in four different scenarios for running jobs in
distributed and heterogeneous resources. Those are the local
scheduling, the centralized meta-scheduling, the
decentralized meta-scheduling with global knowledge and
the decentralized meta-scheduling with partial knowledge
scenario as follows.

1. Ind: This is the simplest case in which each node in the
pool receives the same amount of jobs which are eventually
handled by the LRMS of each node

2. Cen: In the centralized scenario the jobs are submitted
to a unique centralized meta-scheduler which has a detailed
knowledge of total PEs and PEs at any given time of each
remote node. The scenario uses the BestFit heuristic
algorithm to demonstrate the optimization scenario regarding
to the benchmark metrics. Those are the job response time,
job waiting time and job slowdown.

3. Dec-G: In the decentralized scenario each node adopts a
complete knowledge of the remote nodes. Also, the nodes
don’t have a detailed knowledge of PEs of other nodes, so
the CASA will be evaluated for job delegation behaviours.

4. Dec-P: In the decentralized scenario with partial
knowledge of the resource discovery service each node has
knowledge of six remote nodes for delegating jobs.
The observed results are illustrated as follows:

1. Job success completion
a. Ind: in the independent scenario jobs require different

operating system cannot be delegated, thus they fail. Also the
completion rate is 67% on the arrival nodes.

b. Cen: the centralized meta-scheduler has full control
of nodes. The completion rate is 99% when 3% of jobs are
executed from nodes hosting the centralized meta-scheduler

c. Dec-G: the decentralized meta-scheduler with
complete knowledge allows nodes to find other remote nodes
during the job submission phase because of this global
resource discovery service. It has been observed a 99% of
completion rate with 6% of jobs to be executed by the arrival
nodes.

d. Dec-P: the partial knowledge of the resource
discovery service of the decentralized meta-scheduler (only
six nodes) slightly decreases the completion rate to 95%. A
14.7% of jobs are executed by the arrival nodes.

2. Resource Usage
a. Ind: in the independent scheduling scenario the 32%

of submitted jobs are not executed by any resource. Also,
uptime when compared with centralized and decentralized
(dec-g, dec-p) is lower wherein 99% are executed.

b. Cen and Dec-G: both scenarios share the same
average resource uptime, thus decentralized and dynamic
CASA can really promote a resource usage level similar to
the BestFit heuristic algorithm. The great advantage is that
centralized BestFit request resource information in contrast
with CASA that doesn’t request either information or control
authorities data, thus offering great flexibility.

c. Dec-P: The resource utilization is slightly decreased
about 6% when compared with the complete knowledge of
the resource discovery service scenario.

3. Job response time, slowdown and job waiting time
a. Ind: in the indecent scenario the average response

time (the time between jobs’ arrival and return time) is
10,608 seconds. The average job slowdown (the ration when
comparing jobs response time with the processing time) is
135. The job waiting time (the waiting time of a job until
execution) is 5459 seconds.

b. Cen: in the centralized scenario the average response
time is 11,665 seconds, a little more because in Ind scenario
32% of jobs suspend their execution and then fail due to the
non prioritized job requirements (e.g PEs). The job waiting
time is better when compared with the Ind scenario (around
1000 seconds).

c. Dec-G: In the global knowledge of the decentralized
scenario the response time is 7790 which is less than the both
aforementioned Ind and Cen. Also, the job slowdown is 2/3
of the decentralized. Finally the global resource discovery
service is significantly improved.

d. Dec-P: in this scenario with the partial knowledge
(only 6 nodes) the job response time is 6.598 seconds and the
waiting time is 764 seconds which is the most optimized of
all scenarios. The results show that this solution is better than
the independent and centralized scenarios.

To conclude the CASA is based on nodes’ real time
responses and behaves dynamically without exposing
information from resources. The simulation result shows
that job slowdown, waiting times, response times and
messages overhead values have been significantly improved.

154

V. MODELLING THE DYNAMIC METRICS OF INTER-
CLOUD META-SCHEDULING

Having discussed both CASA and FD, we conclude to
the dynamic requirements of meta-scheduling in inter-clouds
with the aim of providing an aggregated workload balancing
mechanism.

When correlating and comparing the Federated grids
meta-scheduling algorithms and CASA, we conclude that
there is a number of positive features that are applicable and
suitable for the inter-cloud meta-scheduling theme. Firstly,
the federated grid scheduler [13] in the dynamic scenario
(DO) shows an easily adapted behaviour in the large scale
of the grid while the results shows the same amount of job
mappings with the static scenario (SO). Thus, latencies are
avoided and performance is increased. In addition, the
advance scheduling is proven valuable as it uses previous
job delegation data for queuing jobs to target resources in
advance. In general the best results are coming from the
dynamic objective with the advance scheduling (DO-AS)
scenario. Herein jobs queuing happen in advanced without
waiting for free available nodes, thus authors conclude that
the performance is more consistent as the results show
almost identical because the queue is practically null.

The CASA [8], on the other hand, is a phase-by-phase
solution, which consists of two sub-scheduling algorithms;
the job submission phase and the dynamic scheduling phase.
Significant results from CASA include the following. The
algorithm hassign adopts a probabilistic approach for
selecting nodes without greedily selecting the best ones
which will lead to starvation. The decentralized scenario
with global knowledge based on the global resource
discovery service allows nodes to find other remote nodes
during the job submission phase. In addition, centralized
and decentralized scenarios share the same average resource
uptime, thus decentralized and dynamic CASA can really
promote a resource usage level similar to the BestFit
heuristic algorithm. Moreover, centralized static algorithms
request resource information in contrast with CASA that
doesn’t request either information or control authorities
data, thus offering great flexibility. The decentralized with
partial knowledge scenario with the data of only 6 nodes,
offer the most optimized job response time of all scenarios.
The results show that this solution is far better than the
independent and centralized scenarios. The simulation result
shows that job slowdown, waiting times, response times and
messages overhead values have been significantly
improved.

Having said that, the essential characteristics of previous
works could lead to requirements that have been addressed
from the aforementioned discussion summarized as follows:

• Overall view: Most of the existing works [3][4][10] aim
to optimize job scheduling from the scope of improving
individual participants’ performance of grids and clouds
without considering an overall performance view as [ye]. For
providing an aggregated view of inter-cloud workloads it is
required that the meta-scheduling will aim to an overall
performance improvement rather than the individual nodes,
or clouds.

• Knowledge level: Most of the existing works as in
[4][5][11] assume that the (meta-) schedulers have a
complete knowledge of the entire pool of resources at any
given time. In practise a partial knowledge of a specific pool
of participants is more realistic and could offer more
flexibility to the environment.

• Processing Information: Most of the existing works as
in [6][11][12] require detailed real time information
processing which involves possibly latencies due to the data
exchanging and authorization procedures of the remote
nodes. However, as have been proven by [8] real time
processing of nodes data could offer significant advantage to
the meta-scheduling process.

• Real Time Responses: Most of the existing works as in
[5][9] make job allocation decision prior to the job
scheduling phase, without considering real-time responses.
Equally, the management of unpredictability is low. On the
other hand, in the case of remote nodes real time response
there is no need to expose internal information during
cooperation e.g. scheduling queues.

• Rescheduling: Most of the existing works as in [3][4][5]
don’t consider the concept of rescheduling in order to adapt
to the unpredictability of the resources. Using re-scheduling,
great flexibility can be achieved as well improvements of the
initial scheduling decision.

• History records: Most of the existing works as in [5][7]
don’t consider the deployment of history records with the
aim of improving re-scheduling. It has been proven by
[8][13] that the usage of recorded previous work delegations
during meta-scheduling can improve performance
significantly.

• Transparent user mappings: Most of the existing works
as in [4][6] don’t consider mapping user request
transparently.

• Fully decentralization: Decentralization is common to
most of the works as it offers great flexibility and scalability.

FIGURE 3: DYNAMIC METRICS FOR INTER-CLOUDS META-SCHEDULING

Thus we have concluded that the essential dynamic
requirements are extracted from [13][8] could lead to the
development of meta-schedulers to be adoptable in inter-

155

clouds. Figure 3 demonstrates the dynamic features when
modelling the requirements for inter-clouds.

In particular, we suggest that the dynamic metrics should
support a real time processing of information environment
for controlling dynamic unforeseen situations. In addition,
we suggest communication without information exposition,
for avoiding authorities’ control and use of history records in
re-scheduling or advance scheduling procedure. Finally,
testing and comparison of benchmark results should be
presented in full and partial knowledge scenarios in which
transparent user mapping is deployed in a decentralized
environment.

VI. CONCLUSION
The work here aims to model the requirements for inter-

cloud meta-schedulers. We have described two approaches
that their characteristics are mapping to the inter-cloud
requirements. Thus, through a detailed discussion of their
functionality, we have addressed the required dynamics
when developing inter-cloud meta-schedulers.

The future prospect of the work includes the
development of a meta-scheduler for inter-clouds. In
addition, this effort will continue the works of [13][8] for
achieving job scheduling across independent resources in
distinct administrative domains. It should be mentioned, that
energy efficiency (Green Clouds) will be considered. This
can be achieved by incorporating migration mechanisms,
during re-scheduling; thus allowing transferring workloads
from high energy consuming clouds to low ones as one of
the future meta-algorithm evaluation criteria.

ACKNOWLEDGEMENTS

The first author would like to thank UNITE FP7-
248583 for their secondment support.

VII. REFERENCES
[1] Buyya, R., Ranjan, R., and Calheiros, R. N., (2010) InterCloud:

Utility-Oriented Federation of Cloud Computing Environments for
Scaling of Application Services, Algorithms and Architectures for
Parallel Processing (2010), Volume: 6081/2010, Issue: LNCS 6081,
Publisher: Springer, Pages: 13-31

[2] Christodoulopoulos, K., Sourlas, V., Mpakolas, I., and Varvarigos, E.,
A comparison of centralized and distributed meta-scheduling
architectures for computation and communication tasks in Grid
networks, Computer Communications, Volume 32, Issues 7-10, 28
May 2009, Pages 1172-1184, ISSN 0140-3664

[3] De Assuncao, M., and Buyya, R., Performance analysis of allocation
policies for interGrid resource provisioning. Information and
Software Technology, 51(1):42{55, 2009

[4] De Assuncao, M., Buyya, R., and Venugopal, S., InterGrid: A case
for internetworking islands of Grids, Concurrency and Computation:
Practice and Experience 20 (8) (2008) 997–1024.

[5] Folling, A., Grimme, C., Lepping, J., and Papaspyrou, A.,
Decentralized grid scheduling with evolutionary fuzzy systems. In
Job Scheduling Strategies for Parallel Processing, pages 16{36.
Springer, 2009

[6] Frerot, C. D., Lacroix, M., and Guyennet, H. (2000a). Federation of
resource traders in objects-oriented distributed systems.
(PARELEC’00) August 27 - 30, Quebec, Canada.

[7] GICTF White Paper , 2010 Global Inter-Cloud Technology Forum,
Use Cases and Functional Requirements for Inter-Cloud Computing,
August 9, 2010, Available at:

http://www.gictf.jp/doc/GICTF_Whitepaper_20100809.pdf, accessed
at: 02/07/2011

[8] Huang, Y., Bessis, N., Norrington, P., Kuonen, P., and Hirsbrunner,
B., Exploring decentralized dynamic scheduling for grids and clouds
using the community-aware scheduling algorithm, Future Generation
Computer Systems, In Press, Accepted Manuscript, Available online
13 May 2011, ISSN 0167-739X

[9] Xu, B., Zhao, C., Hu, E., Hu, B., Job scheduling algorithm based on
Berger model in cloud environment, Advances in Engineering
Software, Volume 42, Issue 7, July 2011, Pages 419-425, ISSN 0965-
9978

[10] Istin, M., Visan, A., Pop, F., Dobre, C., and Cristea, V. 2010. Near-
Optimal Scheduling Based on Immune Algorithms in Distributed
Environments. In Proceedings of the 2010 International Conference
on Complex, Intelligent and Software Intensive Systems (CISIS '10).
IEEE Computer Society, Washington, DC, USA, 439-444.

[11] Korkhov, V. V., Moscicki, J. T., Krzhizhanovskaya, V., V., Dynamic
workload balancing of parallel applications with user-level
scheduling on the Grid, Future Generation Computer Systems,
Volume 25, Issue 1, January 2009, Pages 28-34, ISSN 0167-739X

[12] Lai, K., Huberman, B. A., and Fine, L. (2004). Tycoon: an
Implementation of a Distributed market-based resource allocation
system. Technical Report, HP Labs.

[13] Leal, K., Huedo, E., and Llorente, I.M., A decentralized model for
scheduling independent tasks in federated grids. Future Generation
Computer Systems, 25(8):840-852, 2009. 21, 27

[14] Pop, F., Dobre, C., Stratan, C., Costan, A., and Cristea, V. 2010.
Dynamic meta-scheduling architecture based on monitoring in
distributed systems. Int. J. Autonomic Comput. 1, 4 (December
2010), 328-349.

[15] Sotiriadis, S., Bessis, N., and Antonopoulos, N., Towards inter-cloud
schedulers: A survey of meta-scheduling approaches, Sixth
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing, Barcelona, Spain, Oct 26-28 2011 {To appear}

[16] Weissman, J. B. and Grimshaw, A. (1996). Federated model for
scheduling in widearea systems. HPDC’96: Proceedings of the Fifth
IEEE International Symposium on High Performance Distributed
Computing, pages542-550, August

[17] Xhafa, F., and Abraham, A., Computational models and heuristic
methods for Grid scheduling problems, Future Generation Computer
Systems, Volume 26, Issue 4, April 2010, Pages 608-621, ISSN
0167-739X

156

