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Abstract— Cloud computing provides a promising paradigm 
for the deployment and utilization of online resources 
including hardware and software services by Internet users. In 
such an e-infrastructure environment, the scheduling of user-
defined tasks is always considered as a complicated part of the 
overall system modelling. Specifically, in the case of inter-
clouds and inter-enterprises scheduling optimization is 
fundamentally important for achieving the best possible 
capacity in terms of resource utilization. Thus, existing 
approaches that consider system dynamics, interoperability 
and heterogeneity issues become important aspects for 
providing advanced scheduling decisions. In this work, we 
survey some highly dynamic meta-schedulers that are suitable 
for enterprises using grids and/or clouds. Our intention is to 
elicit the characteristics and produce a model encompassing 
the architectural requirements that will enable high meta-
scheduling performance in inter-cooperative e-infrastructures. 

Keywords: Cloud; Inter-clouds, Inter-enterprises, Federated 
Clouds, Meta-schedulers, Community Aware Scheduling 

I. INTRODUCTION 
During the last decade, the cloud computing paradigm 

became one of the most promising technologies for 
achieving distribution of resources in a wide area scale. 
However, as today’s trends tend users to challenge the cloud 
elastic services, a significant approach namely inter-clouds 
[7] that enables inter-cooperation between clouds, has been 
introduced as to improve the quality of service offered by the 
capacity oriented clouds. Specifically, authors in [1] discuss 
the inter-cloud vision and suggest that the major aim is to 
facilitate the auto-scaling of resources among various cloud 
infrastructures for exchanging services.  

In parallel to our previous work [15] we have highlighted 
the need for an aggregated view of sharing cloud resources in 
order to enable inter-cloud provision. In particular, the work 
[1] suggests that the herein highlighted shortcoming (the lack 
of a no service coordinating resource sharing among separate 
clouds) reduces considerably the quality of service while at 
the same time increases the administrative cost (maintenance 
and support). A notable example is the case of Amazon, a 
cloud leader vendor [15], which cloud data-centres don’t 
support collaboration with each other and leave users with 
the option to select their desired cloud sub-system based on 
their geographical location; this may decrease the quality of 
service and scalability.  

Recently, some cloud providers aim at enabling an inter-
cloud provision, by utilizing a pool of distributed cloud 
resources in order to improve their quality standards. 
Specifically, joint clouds form a pool of collaborated sub-
clouds or sub-resources (e.g. grids) similar to a dynamic 
distributed system. Within such an e-infrastructure, one of 
the most fundamental aspects, which emerges architectural 
design issues is the scheduling algorithm [14] that deals with 
the selection of resources considering the characteristics of 
the actual system (centralized or decentralized) as well as the 
requirements of the desired scenario. 

In general, various taxonomies of schedulers have been 
introduced, including schedulers for operating system (OS), 
high performance computing, parallel and meta-computing 
[17]. Among all these, the task of scheduling in the meta-
computing has been proven to be the most complex [2][10] 
mostly due to the involvement of a mixture of local resource 
management systems (LRMS). In addition, unforeseen 
situations, i.e. the highly dynamics (fluidness) of the meta-
computing environment in which resources can join and 
leave unexpectedly, can lead to increased complexities [14]. 

In [15] we have surveyed a number of highly dynamic 
schedulers applied within meta-computing environments, i.e. 
grids. In this paper, we aim to identify the requirements for 
an inter-clouds meta-scheduler, which will enable higher 
performance in terms of the quality of service to be offered 
by the involved clouds. Within this context, Section II 
presents the need for the inter-cloud meta-scheduling, and 
Section III introduces the problem statement. The rest of the 
paper is organised as follows. Section IV discusses the 
functionality of the dynamic algorithms and Section V the 
model of requirements drawn from the literature study. 
Finally, Section VI presents the conclusion and the future 
work towards to inter-cloud meta-schedulers. 

II. THE NEED FOR INTER-CLOUD META-SCHEDULING 
The cloud paradigm share several commonalities with 

other technologies including grid and utility computing by 
combining their most important characteristics in order to 
offer a variety of services i.e. infrastructure as a service etc. 
Clearly, the key features of each one of them contribute 
towards additional complexity when considering a (meta-) 
scheduling approach [17]. For example, the grid 
characteristic of resource geographical distribution and the 
use of virtualization technology in utility computing 
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highlight new requirements for clouds. Similarly, in case of 
inter-enterprises of cloud-to-cloud and/or cloud-to-grid, also 
known as inter-clouds, new requirements are required for 
achieving optimum scheduling performance. 

In particular, the need for an inter-cloud meta-scheduling 
approach has been introduced in [15], which provides a 
detailed taxonomy of a number of meta-approaches for 
identifying requirements, characteristics and classify 
solutions in terms of most and least suitability for inter-
clouds. Specifically, we have highlighted the growing 
interest in inter-cloud computing which includes endeavour 
of the biggest vendors in the area such as HP, Intel, Yahoo, 
etc. [1]. However, their innovative efforts have led to the 
establishment of a federation of collaborated clouds with 
joint initiatives. The inter-cloud vendor-oriented approach 
has a specific control plane rather than of a setting based on 
future, sustainable standards and open interfaces. 

Having said that, inter-clouds can be considered as a 
wide research effort in which issues such as resource 
discovery, allocation and scheduling are quite the most 
important. In this work we only focus on the job scheduling 
aspect for distributed environments (grids and clouds) so 
deliberately, we aim to identify schedulers that are easy to 
adopt within inter-clouds e-infrastructures. 

However, one of the most important criterions for our 
selection is the dynamics of a system as the unpredictability 
of resources is high [8][11][13] thus, the dynamic-ness of a 
meta-scheduling approach forms the basis of our research. 
Specifically, static-ness in scheduling is defined as the 
approach in which all the decisions done prior to the 
execution of the schedule. On the other hand, dynamic-ness 
allows decisions during the execution time and thus, it 
enables the consideration of unforeseen situations that may 
occur in large-scale, fluid e-infrastructures. Several static 
schedulers have been discussed in [2][15] yet in the most of 
the approaches these have used as the basis for the 
development of more complex dynamic schedulers, which 
are discussed in [8][10][17]. In the following section, we 
describe the problem statement of the present study, which is 
based on the dynamically changed nature of an inter-cloud e-
infrastructure environment.  

III. PROBLEM STATEMENT 
During the past years scheduling within uncertain 

environments in terms of scale (e.g. grids) has been 
extensible studied. A great variety of scheduling algorithms 
(centralized or distributed) have been proposed by [3][4][5], 
aiming to a more flexible and efficient operation. However 
[16] suggest that when things come to scenarios and use-
cases aiming at testing a realistic solution it turns to be 
impossible to design such tools, mainly because of important 
characteristics such as support for dynamic scheduling are 
not considered. In addition, the clear problem is that the 
actual requirements are not known in advance, which may 
cause a change of the initial conditions and chosen 
parameters. Thus, the strategy for developing such solutions 
should be fully automated, and flexible in terms of 
considering dynamic metrics as much as possible. In this 
work, we aim to identify those metrics on the basis of a 

literature study about two meta-scheduling approaches. In 
particular, those metrics are closely related to the distributed 
meta-scheduling theme as is concerned with the distribution 
of jobs across independent sites in distinct administrative 
areas. The decentralization aims to overcome the common 
problems such as the single point of failure and the 
bottleneck for the cloud environment as the central instance 
has a solely responsibility for handling all jobs and request. 
Thus, we select the distributed meta-scheduling approach 
where various LRMS deploy their own meta-scheduling 
strategies for job delegations and executions. We continue 
the present study by discussing the most common meta-
approaches for identifying possible inter-clouds algorithms. 

IV. THE ALGORITHMS 
In [15], we have presented a state-of-the-art review of 18 

meta-scheduling technologies. The purpose was the analysis 
of possible solutions for determining meta-scheduling to 
inter-enterprises including inter-clouds. Furthermore, we 
have discussed the inter-cloud needs and requirements and 
we have correlated the characteristics of meta-schedulers to 
inter-cloud requirements. Throughout the review of the 
functionality of approaches, we have recognized the need, 
which eventually leads to the modelling of a forthcoming 
and novel meta-scheduling algorithm suitable for inter-
clouds. Thus, we have concluded that in particular, 6 works 
out of 18 have been identified as the most suitable candidates 
to used in an inter-cloud scenario (readers are pointed to 
[15]), while 2 out of 6 presented in [13][8] offer the most 
related significant advantages. This suggestion has been 
concluded after a correlation of current meta-approaches 
characteristics to the future inter-cloud requirements. 

Different from all others, both solutions [13][8], offer 
decentralized meta-schedulers that evaluate static and 
dynamic scenarios of total and partial knowledge of the 
resource pool and use previous recorded history data of work 
delegations to improve their scheduling decision. In addition, 
experimental results have shown significant improvements 
of the selected benchmarks when the dynamic scenarios are 
applied and compared with the static and non-dynamic ones. 

In particular, [13] presents four scenarios of decentralized 
settings in which meta-schedulers have partial and full 
domain knowledge in dynamic job submissions without 
information exposing. Also, this approach offers advance 
reservation mechanism and transparent user mapping while 
compares results and selected benchmarks which shows a 
remarkable meta-scheduler performance when an 
unpredictable situation occurs. 

Figure 1 demonstrates the relational model of the most 
important features that are treated as metrics for defining the 
dynamically changed attributes. In brief the dynamic 
objective, which represents the actual jobs submissions, 
happens in a fully decentralized environment which uses 
history records without information exposing. Testing 
includes scenarios of fully and partial knowledge of the 
resource pool, as well as deployment of advance reservation 
mechanisms. In parallel to [13], [8] presents an advanced 
solution that evaluates four scenarios of centralized and 
decentralized approaches in full and partial resource pool 
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knowledge scenarios. Specifically, [8] suggests a model for 
improving [13] functionality by incorporating real-time 
processing of information. The aim herein has been changed, 
as it is to achieve a globalized performance and not with the 
view of improving each individual participant benchmarks.  

 

FIGURE 1: DYNAMICS OF FEDERATED CLOUDS 

In addition, instead of advance reservations a re-
scheduling concept is introduced. The authors conclude that 
an overall improvement of the system performance happens 
when considering the dynamics as the meta-scheduler. 
During re-scheduling, real time information exchanging 
occurs without internal data exposition. Figure 2 illustrates 
the dynamics of the [8] meta-scheduling algorithm by adding 
extra features to the [13] solution. 

 

FIGURE 2: DYNAMICS OF THE CASA 

The following section presents a detailed discussion of 
the functionality of a) the Federated Grid Algorithm [13] and 
b) the Community-Aware Scheduling Algorithm (CASA) [8] 

with the view to identify the design issues and modelling 
requirements for inter-clouds meta-schedulers. 

A. The Federated Grids Algorithm 
This approach provides an alternative to the centralized 

solutions by proposing the deployment of a meta-scheduler 
on the top of each grid infrastructure (LRMS) within a 
federated grid. Next, we discuss the algorithm principle, the 
objective algorithms (scheduling algorithms), the design and 
implementation issues, as well as the results from the 
compared benchmarks. 

1) The algorithm principle 
[13] presents a meta-scheduling strategy for federated 

grids as the evolution of the grid computing. Particularly, 
the work aims to the expansion of the grid functionality as 
to allow resource sharing among several grid infrastructures. 
The model is a generic decentralized approach which places 
meta-schedulers on the top of each grid system. In their 
study, authors propose four algorithms to compare the 
performance of the different grids forming a federation. 

Their decentralized scheduling approach includes that a 
meta-scheduler will be placed on the top of each grid 
infrastructure that implements appropriate algorithms. Also 
the users mapping will be fully transparent. Each of the four 
algorithms of the meta-scheduler aims to increase the 
performance while reducing the make-span. Finally, the 
mapping of jobs to resources doesn’t require configuration 
information. For implementing each of the mapping strategy 
the approach use the GridWay [13] a meta-scheduler for 
grids. Specifically, a performance model as described in 
[13] is applied to the GridWay to obtain results from the 
objective functions (makespan and performance of resource) 
of each of the four algorithms. 

The GridWay’s current scheduling policy implements 
the Normal algorithm. It is a simple mapping policy that 
maps a number of DISPATCH_CHUNKS of unscheduled 
jobs to internal or external resources each a time of 
SCHEDULING_INTERVAL in seconds. The algorithm 
maps the next job to the first internal resource, in the case of 
no availability the job is mapped to an external. This basic 
functionality is relying upon the decision of available free 
nodes without considering past performance data of 
participating nodes. Then, the algorithm uses a migration 
control to check if the job will start its execution before the 
SUSPENSION_TIMEOUT value is exceeded, in that case 
the job is scheduled again. The authors examined the effect 
of the algorithm and claim that this is a simple grid 
scheduler that doesn’t provide significant results under the 
selected scenario. The following presents the four mapping 
algorithms. 

2) The Objective Algorithms: SO, DO, SO-AS, DO-AS 
Herein we present an elaborated discussion based on the  

four objective algorithms discussed in [13] including static 
and dynamic objectives as well a combination of each 
approach to the advance scheduling strategy. 

a) Static Objective (SO) 
The variable that denotes the number of jobs to be 

submitted to each of the grid infrastructure is called an 
objective, and it aims to maximizing the throughput of 
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internal resources while at the same time the make-span 
value remain untouched. 

The SO algorithm as denoted by its name is static, thus 
performance measurements are obtained in the form of 
linear equation for each participant by training the testbed 
using the Normal algorithm. Once they have those results, 
they decide the number of jobs that should be submitted to 
each participant, in an off-line fashion (total domain 
knowledge), for increasing the throughput of internal 
resources without increasing the makespan. Then the 
algorithm is updated and executed. Specifically, the SO 
maps DISPATCH_CHUNK of unscheduled jobs to internal 
resources every SCHEDULING_INTERVAL seconds. If 
there aren’t any available internal resources the SO schedule 
jobs to external resources. 

b)  Dynamic Objective (DO) 
In this case the DO calculates objective dynamically 

instead of the off-line procedure of the SO algorithm. In 
particular, the DO algorithm first determines the 
performance of each internal resource. Then, it calculates 
the linear relations of the whole federated grid by viewing it 
as an aggregation of participant grids. Specifically, the DO 
algorithm uses the jobs delegations to internal resources 
(previous history records) to calculate the number of jobs to 
be submitted to external resources. Finally a new event is 
programmed for updating the next objective. 

The advantage of DO, when compared with SO, is that 
the first one can be easily be adapted to a large scale and 
complex grid while at the same time it behaves similar to 
SO, by mapping a number of DISPATCH_CHUNKS of jobs 
to resources every SCHEDULING_INTERVAL seconds. 

c) Static Objective - Advanced Scheduling (SO-AS) 
The SO-AS combines the static objective and the 

advance scheduling strategy by queuing jobs to target 
resources in advance without waiting for free resources. In 
this way, the latencies are avoided while at the same time 
the performance is increased. In particular, similar to 
aforementioned objectives the scheduler maps a number of 
DISPATCH_CHUNKS every SCHEDULING_INTERVAL in 
seconds. So, firstly, the SO-AS algorithm determines what 
jobs of the DISPATCH_CHUNKS are internaljobs and 
creates a number called toIntenal. This number is 
proportional to the number of jobs that the SO algorithm 
decides that have to be submitted to internal resources. 

After that, the next job is mapping by the AS which 
checks if the scheduledjobs keeps less than the 
DISPATCH_CHUNK of jobs. In the case of an internal job 
and available internal resources the job is scheduled to one 
of them. The scheduleToInternalResource queues 
to a limit of number of nodes multiplied with a max running 
resource factor. In the case of an external job the algorithm 
avoids the situation in which the federation of grids can 
receive jobs from another participant and schedules jobs to 
internal resources. Finally a new event is programmed for 
the next objective update. 

d) Dynamic Objective - Advance Scheduling (DO-AS) 
The DO-AS algorithm is similar to the SO-AS with the 

only difference that calculates the new objective 

dynamically. Also the advance scheduling strategy denotes 
that the scheduler doesn’t wait for a free node and queues 
jobs in advance in the target resources.  

3) The design, the implementation and the test scenario 
of the objective algorithms 

The authors implement five versions of the 
GridWaySim that differ in the mapping strategy namely the 
Normal, So, DO, SO-AS and DO-AS and perform 
simulations using the GridSim testbed. All the 
aforementioned versions have the same configuration, the 
same number of users that submit their jobs to the same 
time to the same broker. 

The test scenario contains two grid resources, the DSA 
(Distributed Systems Architecture) and the LCG (LHC 
Computing Grid). DSA represents the grid group of the 
“Universidad Complutense de Madrid”, while LCG testbed 
represents the “Large Hadron Collider (LHC) Computing 
Grid”. In this scenario, a DSA internal user could submit a 
job to the DSA GridWay broker, and the job can be either 
executed by the DSA interval resources or the LCG external 
resources. Similarly jobs submitted to the Globus WS-
GRAM interface of the LCG GridWay are from external 
users. They demonstrate in this scenario a common situation 
on which at the same time use its internal resources.  

4) 7.2.4 Simulation Entities, Parameters and Results 
At the simulation time the GridWaySim generates three 

users, two GridWay meta-schedulers, one DSA testbed, one 
LGC testbed and one Workload trace. Specifically, the two 
meta-schedulers are required because the scenario 
demonstrates the inter-connection of the DSA and the LGC 
Grid, so one meta-scheduler for each grid is required. The 
testbed resources are represented in the test scenario and 
they are called DSATestbed and LCGTestbad respectively. 
The actual experiment is a collection of 550 equal jobs, 
which as suggested by [13] the sample represents a medium-
sized grid experiment. The authors discuss their 
experimental results based on the level of saturation of the 
LCG resource, when at the same time knowing the number 
of free available PEs. Thus three users submit their 
experiments as follows. User_0 submits the experiment to 
an ideal scenario of low saturation with free available PEs. 
User_1 submits the experiment to a medium saturation 
scenario. Finally, User_2 submits the experiment to a high 
saturation scenario of limited number of free available PEs. 
Then the authors present the number of jobs executed on the 
three scenarios, which represent the objectives of the 
experiments. In the case of different algorithm the 
objectives are not similar mainly due to the off-line 
functionality that offers a full view of the performance of 
the resources as happened in the case of SO and SO-AS. On 
the other hand, in the case of DO and DO-AS, the 
knowledge of the same performance is partial. At last, DO 
and DO-AS differ in the advance scheduling strategy, which 
doesn’t wait for free nodes at the time of job submission. 
The results extracted from [13] follow: 

a) The Normal and DO algorithms behave normally and 
as saturation is increased more of the jobs are executed in 
DSA. 
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b) SO-AS and SO show a different behaviour and they 
produce poor results because of the “long periods on which 
single jobs cannot be executed in LCG”. 

c) DO-AS behave also differently and calculates very 
similar objectives for three levels of saturations. 

Then the authors present the completion time for each 
job to each level of saturation and with this way they offer a 
global view of the five algorithms as follows: 

a) Normal, SO and DO submit jobs when there are 
available nodes thus when saturation is increased they need 
more time for completing the experiment. 

b) DO-AS queues jobs in advance without waiting for 
free available nodes, thus authors conclude that the 
performance is more consistent as the results show almost 
identical because the queue time in the LCG is practically 
null. 

c) The most notable results are from User_2 which the 
queuing of jobs is done in advance without waiting for free 
PEs. 

d) Finally the authors suggest that the combination of 
the performance model with the scheduling in advance 
reveal the best mapping performance. 

B. The Community-Aware Scheduling Algorithm 
The Community-Aware Scheduling Algorithm (CASA) 

is a two phase scheduling solution which contains a set of 
five heuristic sub-algorithms. The functionality of the 
CASA is elaborated on the basis of work shown in [8] 
starting with the algorithm principle, the sub-algorithms 
explanation, the simulation environment, and the results. 

1)  The algorithm principle 
The CASA assumes that a number of N nodes exists in a 

grid environment, wherein N = {n1, n2, …, nn}, in 
which some of them have job submissions. Within this 
setting the nodes that assign jobs to others are called 
initiators and the nodes receiving requests are called 
responders. Each time a job called j ,,  is sent from an 
initiator � to a responder the following characteristics are 
considered: 

a)   The required processing elements (PEs) including 
CPU, memory, etc. of the job denoted as jpe

,,   
b)   The estimated execution time denoted as jlength

,,  
c)   The estimation of the processing elements, also known 

as million of instructions per second denoted as jmips

,,  

d)   The job load calculation based on previous 
assumptions calculated by the formulae load  = jpe

,  ,   

jlength

,   ,     j
mips

,,  

The CASA also considers the unpredictability of the grid 
system by highlighting that the dynamics such as, the local 
job submission distribution, the local job characteristics; the 
job status and resource usages are impractical to be 
distributed. Thus, a more advanced solution is to retrieve 
required information at the runtime from real workload 
traces as done in CASA. In particular, the algorithm is a 
phase-by-phase solution which consists of two sub-
scheduling algorithms namely as the job submission phase 
and the dynamic scheduling phase. Starting with the job 
submission phase the algorithm decides the strategy for 
submitting jobs to candidate nodes. Specifically the 

following steps contain a step-by-step explanation of the 
submission phase functionality. 

a)  A node na receives a job j ,,  from the local user na is 
the requester and generates a request message using the 
algorithm hrequest 

b)  The job characteristics (PEs, heterogeneity) are 
including in the message an interface itneighbors(na) is 
invoked in order locate a list with discovered remote nodes 
the request message is distributed to each of the remote 
nodes of the list each responder node receiving the 
request message invokes the haccept algorithm to decide 
the job execution or not including node’s capabilities and 
administrative characteristics. 

c)  In the case that delegation is decided, an accept[R] 
message accR

, ,, ,,  is generated and sent back to the requester 
the accept message contains the estimated response time 
of the responder node n  requester collects all the 
accept[R] messages and invokes the hassign to select the 
remote node for delegation. 

d)  The algorithm hassign adopts a probabilistic approach 
for selecting nodes without greedily selecting the best ones 
which will lead to starvation. 

e)  Finally the node n  is selected and an assign message is 
send by the hassign which encloses all the related data. 
Next, we present a detailed discussion of the sub-algorithms. 

2) The sub algorithms 
The dynamic scheduling phase is a complementary 

action for adapting to dynamic and unpredictable changes of 
the system. Specifically, each node n� in the grid contains a 
local queue with jobs submitted either from the local user or 
remote nodes. First the hresched algorithm is invoked in 
tinterval  intervals to find the jobs with the longest waiting 
times of the local queue. Afterward the interface 
itneighbors(n ) will be invoked to find a list with remote 
nodes and the hresched algorithm generates an inform 
message inf ,,  which contains the rescheduled job 
including its characteristics (PEs, estimated execution time, 
job profile). After that the responder node receives the 
message and invokes the h’accept algorithm to decide 
whether or not the job delegation will be accepted. The 
h’accept works similar to the haccept, except one difference, 
there should be worthwhile benefit from rescheduling. If the 
n  accepts the job an accept[I] message accI

, ,, ,,  is send 
to n . The n  collects and compares the accept[I] 
messages for job ,,  and selects the appropriate node for 
rescheduling the job.  

In the following we detail the CASA sub-heuristic 
algorithms namely as hrequest, haccept, hassign, hresched, and 
h’accept. The hrequest algorithm is launched every time a local 
user submits as job called job ,  to a node . At this point 
the job submission phase is initiated with the aim of locating 
the proper node from the scope of the overall grid. 
Specifically, the itneighbors interface is invoked in order to 
fetch a list with the addresses of remote nodes. Then the 
hrequest sends a message with the characteristics of the job, 
including, jpe

,,  , j
length

, , j
mips

,  to each remote node. 
The haccept is invoked in each remote node and represents 

the delegation acceptance algorithm. Then, jobs descriptions 
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are matching with the remote resources characteristics, e.g. 
heterogeneity and number of processing elements required. 
Finally, the responder generate an accept[R] message 
along with an estimation of the execution time is send back 
to requester node.  

The haccept calculates the estimated job response time by 
summing up the total time of the queue and the estimated 
time of the job. The local job queue contains a sequence of 
already received nodes waiting for execution. The shadow 
job queue contains a sequence of already accept[R] 
messages probability along with the job characteristics 
profile. The hassign algorithms selects the responder node 
which offers the shortest response time and delegates the 
job ,  to the node. Before that, several accept messages 
have been received from remote nodes. In the case that the 
same nodes are greedily selected from the requester then a 
probabilistic procedure happens.  

The hresched algorithm for checking periodically which of 
the already queues jobs could be reassigned to other nodes 
for improving the overall performance and grid resource 
utilization. The basic idea is to select the appropriate jobs, 
which are already queued to different nodes and re-assign 
them to various nodes.  

The h’accept is the algorithm for requesting rescheduling 
acceptance from the remote nodes. Specifically, when a node 
receives a reschedule request estimates the response time for 
each job waiting in the local queue. 

3) The simulation scenarios and the benchmark results 
The CASA scheduling sub-algorithms has been 

evaluated in four different scenarios for running jobs in 
distributed and heterogeneous resources. Those are the local 
scheduling, the centralized meta-scheduling, the 
decentralized meta-scheduling with global knowledge and 
the decentralized meta-scheduling with partial knowledge 
scenario as follows. 

1.  Ind: This is the simplest case in which each node in the 
pool receives the same amount of jobs which are eventually 
handled by the LRMS of each node 

2.  Cen: In the centralized scenario the jobs are submitted 
to a unique centralized meta-scheduler which has a detailed 
knowledge of total PEs and PEs at any given time of each 
remote node. The scenario uses the BestFit heuristic 
algorithm to demonstrate the optimization scenario regarding 
to the benchmark metrics. Those are the job response time, 
job waiting time and job slowdown. 

3.  Dec-G: In the decentralized scenario each node adopts a 
complete knowledge of the remote nodes. Also, the nodes 
don’t have a detailed knowledge of PEs of other nodes, so 
the CASA will be evaluated for job delegation behaviours. 

4.  Dec-P: In the decentralized scenario with partial 
knowledge of the resource discovery service each node has 
knowledge of six remote nodes for delegating jobs. 
The observed results are illustrated as follows: 

1. Job success completion 
a.  Ind: in the independent scenario jobs require different 

operating system cannot be delegated, thus they fail. Also the 
completion rate is 67% on the arrival nodes. 

b.  Cen: the centralized meta-scheduler has full control 
of nodes. The completion rate is 99% when 3% of jobs are 
executed from nodes hosting the centralized meta-scheduler 

c.  Dec-G: the decentralized meta-scheduler with 
complete knowledge allows nodes to find other remote nodes 
during the job submission phase because of this global 
resource discovery service. It has been observed a 99% of 
completion rate with 6% of jobs to be executed by the arrival 
nodes. 

d.  Dec-P: the partial knowledge of the resource 
discovery service of the decentralized meta-scheduler (only 
six nodes) slightly decreases the completion rate to 95%. A 
14.7% of jobs are executed by the arrival nodes. 

2. Resource Usage 
a.  Ind: in the independent scheduling scenario the 32% 

of submitted jobs are not executed by any resource. Also, 
uptime when compared with centralized and decentralized 
(dec-g, dec-p) is lower wherein 99% are executed. 

b.  Cen and Dec-G: both scenarios share the same 
average resource uptime, thus decentralized and dynamic 
CASA can really promote a resource usage level similar to 
the BestFit heuristic algorithm. The great advantage is that 
centralized BestFit request resource information in contrast 
with CASA that doesn’t request either information or control 
authorities data, thus offering great flexibility. 

c.  Dec-P: The resource utilization is slightly decreased 
about 6% when compared with the complete knowledge of 
the resource discovery service scenario. 

3. Job response time, slowdown and job waiting time 
a.  Ind: in the indecent scenario the average response 

time (the time between jobs’ arrival and return time) is 
10,608 seconds. The average job slowdown (the ration when 
comparing jobs response time with the processing time) is 
135. The job waiting time (the waiting time of a job until 
execution) is 5459 seconds. 

b.  Cen: in the centralized scenario the average response 
time is 11,665 seconds, a little more because in Ind scenario 
32% of jobs suspend their execution and then fail due to the 
non prioritized job requirements (e.g PEs). The job waiting 
time is better when compared with the Ind scenario (around 
1000 seconds). 

c.  Dec-G: In the global knowledge of the decentralized 
scenario the response time is 7790 which is less than the both 
aforementioned Ind and Cen. Also, the job slowdown is 2/3 
of the decentralized. Finally the global resource discovery 
service is significantly improved. 

d.  Dec-P: in this scenario with the partial knowledge 
(only 6 nodes) the job response time is 6.598 seconds and the 
waiting time is 764 seconds which is the most optimized of 
all scenarios. The results show that this solution is better than 
the independent and centralized scenarios. 

To conclude the CASA is based on nodes’ real time 
responses and behaves dynamically without exposing 
information from resources. The simulation result shows 
that job slowdown, waiting times, response times and 
messages overhead values have been significantly improved. 
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V. MODELLING THE DYNAMIC METRICS OF INTER-
CLOUD META-SCHEDULING 

Having discussed both CASA and FD, we conclude to 
the dynamic requirements of meta-scheduling in inter-clouds 
with the aim of providing an aggregated workload balancing 
mechanism.  

When correlating and comparing the Federated grids 
meta-scheduling algorithms and CASA, we conclude that 
there is a number of positive features that are applicable and 
suitable for the inter-cloud meta-scheduling theme. Firstly, 
the federated grid scheduler [13] in the dynamic scenario 
(DO) shows an easily adapted behaviour in the large scale 
of the grid while the results shows the same amount of job 
mappings with the static scenario (SO). Thus, latencies are 
avoided and performance is increased. In addition, the 
advance scheduling is proven valuable as it uses previous 
job delegation data for queuing jobs to target resources in 
advance. In general the best results are coming from the 
dynamic objective with the advance scheduling (DO-AS) 
scenario. Herein jobs queuing happen in advanced without 
waiting for free available nodes, thus authors conclude that 
the performance is more consistent as the results show 
almost identical because the queue is practically null. 

The CASA [8], on the other hand, is a phase-by-phase 
solution, which consists of two sub-scheduling algorithms; 
the job submission phase and the dynamic scheduling phase. 
Significant results from CASA include the following. The 
algorithm hassign adopts a probabilistic approach for 
selecting nodes without greedily selecting the best ones 
which will lead to starvation. The decentralized scenario 
with global knowledge based on the global resource 
discovery service allows nodes to find other remote nodes 
during the job submission phase. In addition, centralized 
and decentralized scenarios share the same average resource 
uptime, thus decentralized and dynamic CASA can really 
promote a resource usage level similar to the BestFit 
heuristic algorithm. Moreover, centralized static algorithms 
request resource information in contrast with CASA that 
doesn’t request either information or control authorities 
data, thus offering great flexibility. The decentralized with 
partial knowledge scenario with the data of only 6 nodes, 
offer the most optimized job response time of all scenarios. 
The results show that this solution is far better than the 
independent and centralized scenarios. The simulation result 
shows that job slowdown, waiting times, response times and 
messages overhead values have been significantly 
improved. 

Having said that, the essential characteristics of previous 
works could lead to requirements that have been addressed 
from the aforementioned discussion summarized as follows: 

• Overall view: Most of the existing works [3][4][10] aim 
to optimize job scheduling from the scope of improving 
individual participants’ performance of grids and clouds 
without considering an overall performance view as [ye]. For 
providing an aggregated view of inter-cloud workloads it is 
required that the meta-scheduling will aim to an overall 
performance improvement rather than the individual nodes, 
or clouds. 

• Knowledge level: Most of the existing works as in 
[4][5][11] assume that the (meta-) schedulers have a 
complete knowledge of the entire pool of resources at any 
given time. In practise a partial knowledge of a specific pool 
of participants is more realistic and could offer more 
flexibility to the environment. 

• Processing Information: Most of the existing works as 
in [6][11][12] require detailed real time information 
processing which involves possibly latencies due to the data 
exchanging and authorization procedures of the remote 
nodes. However, as have been proven by [8] real time 
processing of nodes data could offer significant advantage to 
the meta-scheduling process. 

• Real Time Responses: Most of the existing works as in 
[5][9] make job allocation decision prior to the job 
scheduling phase, without considering real-time responses. 
Equally, the management of unpredictability is low. On the 
other hand, in the case of remote nodes real time response 
there is no need to expose internal information during 
cooperation e.g. scheduling queues. 

• Rescheduling: Most of the existing works as in [3][4][5] 
don’t consider the concept of rescheduling in order to adapt 
to the unpredictability of the resources. Using re-scheduling, 
great flexibility can be achieved as well improvements of the 
initial scheduling decision. 

• History records: Most of the existing works as in [5][7] 
don’t consider the deployment of history records with the 
aim of improving re-scheduling. It has been proven by 
[8][13] that the usage of recorded previous work delegations 
during meta-scheduling can improve performance 
significantly. 

• Transparent user mappings: Most of the existing works 
as in [4][6] don’t consider mapping user request 
transparently. 

• Fully decentralization: Decentralization is common to 
most of the works as it offers great flexibility and scalability. 

 

FIGURE 3: DYNAMIC METRICS FOR INTER-CLOUDS META-SCHEDULING 

Thus we have concluded that the essential dynamic 
requirements are extracted from [13][8] could lead to the 
development of meta-schedulers to be adoptable in inter-
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clouds. Figure 3 demonstrates the dynamic features when 
modelling the requirements for inter-clouds. 

In particular, we suggest that the dynamic metrics should 
support a real time processing of information environment 
for controlling dynamic unforeseen situations. In addition, 
we suggest communication without information exposition, 
for avoiding authorities’ control and use of history records in 
re-scheduling or advance scheduling procedure. Finally, 
testing and comparison of benchmark results should be 
presented in full and partial knowledge scenarios in which 
transparent user mapping is deployed in a decentralized 
environment. 

VI. CONCLUSION 
The work here aims to model the requirements for inter-

cloud meta-schedulers. We have described two approaches 
that their characteristics are mapping to the inter-cloud 
requirements. Thus, through a detailed discussion of their 
functionality, we have addressed the required dynamics 
when developing inter-cloud meta-schedulers. 

The future prospect of the work includes the 
development of a meta-scheduler for inter-clouds. In 
addition, this effort will continue the works of [13][8] for 
achieving job scheduling across independent resources in 
distinct administrative domains. It should be mentioned, that 
energy efficiency (Green Clouds) will be considered. This 
can be achieved by incorporating migration mechanisms, 
during re-scheduling; thus allowing transferring workloads 
from high energy consuming clouds to low ones as one of 
the future meta-algorithm evaluation criteria. 
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