
A Deadline Scheduler for Jobs in Distributed Systems

Quentin Perret1, Gabriel Charlemagne1, Stelios Sotiriadis2, Nik Bessis2

1 Génie Électrique et Informatique INSA, Toulouse, France
2 School of Computing and Maths, University of Derby, Derby, United Kingdom

1 (quentin.perret, gabriel.charlemagne)@gmail.com, 2 (s.sotiriadis, n.bessis)@derby.ac.uk

Abstract — This study presents a soft deadline scheduler for
distributed systems that aims of exploring data locality
management. In Hadoop, neither the Fair Scheduler nor the
Capacity Scheduler takes care about deadlines defined by the
user for a job. Our algorithm, named as Cloud Least Laxity First
(CLLF), minimizes the extra-cost implied from tasks that are
executed over a cloud setting by ordering each of which using its
laxity and locality. By using our deadline scheduling algorithm,
we demonstrate prosperous performance, as the number of
available nodes needed in a cluster in order to meet all the
deadlines is minimized while the total execution time of the job
remains in acceptable levels. To achieve this, we compare the
ability of our algorithm to meet deadlines with the Time Shared
and the Space Shared scheduling algorithms. At last we
implement our solution in the CloudSim simulation framework
for producing the experimental analysis.

Index Terms — Cloud computing, Cluster computing, Soft deadline
scheduling, Hadoop

I. INTRODUCTION
The Future Internet is a notion respresenting the needs and

the solutions for the coming applications over intenet. The big-
data processing is one of the major study theme related to the
Future Internet e.g. integrated vision so of Internet resrouces
[18]. Recently, Google presented MapReduce [1] as a
programming model for efficiently processing big data sets;
produced by large scale systems e.g. grids and inter-clouds
[14], [19]. This was one of the first paradigms for processing
massive data in distributed, cluster and cloud computing. This
is beacuse the computation power required to process and
analyse big data is high thus such decision making
management remains a problem.To this extend, a particular
useful solution has been proven to be the specification of
deadlines for each job for calculating the maximum amount of
resources which will be used to compute the job. An
overpassed deadline in this case can be seen as a
compromisation yet in some instances with a non-manageable
cost.

With this in mind, herein we develop a soft deadline
scheduler for distributed systems with data locality
management named as CLLF. The algorithm is based on the
popular Least Laxity First (LLF) algorithm and has been
designed for considering the practical issues related to
distributed applications. Our solution shows that LLF is not
applicable out of the box on a distributed system because of its
preemptive behaviour which implies a null transfert cost from
one node to an other.

So, we firstly present the deadline-oriented scheduling
work existing in the literature (Section II), and we focus on the
problems related to the implementation of these algorithms on
distributed systems. By this evaluation, we show that in
application such has Hadoop [2] the data locality, the
predictability of the execution time of a task, and the
preemption are important issues to be able to implement any
deadline scheduling algorithm in a cloud. Further to this,
section III describes our proposal algorithm and its
requirements and assumptions. The rest of the paper is
organized as follows, section IV, presents the experiment
scenario and we analyze the performances of CLLF by
comparing the ability of our algorithm to meet deadlines to the
Time Shared and the Space Shared scheduling algorithms
implemented in CloudSim [3]. We show that the deadline-
meeting approach of CLLF allows to minimize the extra-cost
implied by the lateness of a task. We also demonstrate the
importance of the data allotment in a cloud and we propose an
algorithm which determines a data distribution compatible with
CLLF in order to avoid situations where some workers are
resource bottlenecks. Finally, section V illustrates the
concluding remarks and the further research directions of our
work.

II. BACKGROUND
This work aims on exploring time-oriented scheduling for

large scale infrastructures e.g. HPC, grids [20] and clouds by
focusing on their local resource management system [15].
Specifically, meta-scheduling decision making process is based
on random services request from a user or a set of users that are
clients of a datacentre that could be extended to an inter-cloud
system [14]. The inter-cloud facility distributes the request for
service and encloses services into VMs (a procedure that called
sandboxing).

A scheduling algorithm with a deadline-meeting approach
aims of catching the deadlines of every task that are about to be
executed prior to its burst time. Based on that, it becomes
possible to specify tasks which must be processed within a
short delay that means that some answers must be given within
a short delay as well. The notion of deadline meeting has been
defined in many different ways, but the common point for
every definition is that the aim of such scheduler is not only to
guarantee the answer quality, but to do it within time
specification. In this concept, we assuemt that our solution is
capable for scheduling in a large scale setting that could
incorporate meta-computing characteristics e.g. meta-brokers
[13] that are currently are considered a future integration step.

In the following sections, we discuss the different types of
deadlines and we present three popular monoprocessor
deadline-aware scheduling algorithms which are directly
related with our work. We then present the Hadoop schedulers
used to process tasks over a cloud without any form of deadline
management. And we finaly highlight issues to implement a
deadline scheduler in a distributed environment such as
Hadoop.

A. Deadline scheduling literature
A task τ has two main characteristics: its worst execution

time Tτ and a deadline Dτ . We can then classify deadline based
tasks in three categories :

• τ is a hard deadline task: in any case, Tτ < Dτ. The
deadline miss is not allowed.

• τ is a soft deadline task: if Tτ > Dτ , the task has a
penalty in function of its lateness Lτ = Tτ - Dτ.

• τ is a firm deadline task: the task τ gains reward if
Tτ < Dτ . The reward of the task is function its
aheadness Aτ = Dτ - Tτ .

1) Rate Monotonic (RM)

The RM algorithm is probably the most popular and most
used scheduling algorithm in practice on mono-processor
systems. However, it is based on strong assumptions. For
example, the set of tasks which will be proceeded has to be
known a priori. Moreover, each task of the set must:

• be periodic,
• be preemptable,
• be independent,
• have a period equal to its deadline.
The RM algorithm defines each task's priority by its

respective duration. Thus, the shortest task will be given the
highest priority.

2) Earlier Deadline First (EDF)
EDF is an optimal mono-processor scheduling algorithm

with sporadic tasks support. The EDF algorithm gives the
highest priority to the task which has the closest deadline.

The algorithm is preemptive. It means that some tasks may
be interrupted in order to process other tasks with a higher
priority. So, unlike the static priority of the RM algorithm, the
EDF algorithm is driven by “dynamic priority in the sense that
the priority of a request is assigned as the request arrives” [5].

The assumptions made for the RM algorithm are the same
for the EDF algorithm except the periodicity of tasks. So the
only assumptions remaining are that each task must:

• be preemptable,
• be independent (no sequential relation between the

tasks)

3) Least Laxity First (LLF)
The LLF algorithm is another optimal scheduling algorithm

driven by dynamic priorities. It is based on the notion of laxity.
The laxity of a task is defined as the deadline minus the
remaining computation time needed to complete the task [5].

So the laxity is the maximum time that a task can wait before it
becomes not possible to meet its deadline. LLF gives the
highest priority to the process which has the lowest laxity. LLF
is also preemptive and the assumptions are the same as those
for EDF. LLF also have a better support than EDF of non-
periodic tasks [5].

B. Scheduling with Hadoop
Hadoop [2] is a free Java framework implementing the

MapReduce paradigm presented by Google in 2004 [1]. Thus,
Hadoop allows programmers to create distributed applications
with a high level of abstraction from the technical issues
related to distributed systems. A Hadoop cluster is composed
of one master node, and many workers. The jobs are always
submitted by an user to the master which split them in Map and
Reduce tasks. Then the master uses a scheduling policy
depending on the needs of the user to submit each task to the
workers. In this section, we present the two existing scheduling
algorithms which already exist for Hadoop in order to compare
them to our algorithm further in this paper.

1) Hadoop Fair Scheduler (HFS)

“Fair scheduling is a method of assigning resources to jobs
such that all jobs get, on average, an equal share of resources
over time” [6]. This method implies two problems: to be able to
define how fairly a job has been proceeded, and to choose
which job to run when a task slot becomes available.

The fairness can be measured by the calculation of a deficit
which is “the difference between the amount of compute time it
should have gotten on an ideal scheduler, and the amount of
time it actually got'” [6]. So, when a task has a large deficit, it
means that it has been proceeded during less time that it should
have been. This task has been treated unfairly. Thanks to the
deficit of each job, the master can sort tasks by fairness and
give the highest priority to the one which has been proceeded
the most unfairly. The actual goal of the HFS is to minimize
the deficit of each application. If the deficit equals zero for all
tasks, it means that the resources have been shared in perfect
proportions.

In practice, several users may need the cluster at the same
time, and it is easy to imagine that the jobs will not have the
same priority. So, this scheduler also implements a system of
pools which groups some jobs together. Then, the scheduler
will try to be fair between the pools. For example, let's say that
each user using the cluster has got his own pool (which is the
actual default configuration for HFS), the resource will be
fairly shared between pools, and thus each user will dispose of
a fair part of the resources to run his jobs without slowing
down the other users. It's also important to note that HFS
allows to give weights to pools or to jobs. The job weights can
be based on a given priority or on their sizes. The scheduler
fairly shares the resources between the pools, but the jobs
within each pool must be scheduled as well. To solve this
issue, HFS uses the exact same scheduling algorithm locally
inside the pools. Thus, the resources are fairly shared between
pools, and the running time of each job is fairly shared in each
pool. This management allows several users to use the cluster

at the same time and provides them a draft of multitasking
behaviour. This algorithm is non preemptive.

2) Hadoop Capacity Scheduler (HCS)

The Hadoop Capacity Scheduler is based on the idea of a
priori resource sharing. As explained in [7], the HCS
implements a multiple queues support. A fraction of the
available resources is allocated to each queue a priori. So, all
jobs are submitted to queues, and each job in each queue is
proceeded by the dedicated fraction of the resources that has
been allocated to the queue. If there's unallocated resources
available, it can be used by any queue beyond its guaranteed
capacity.

Jobs are sorted in queues by submission time (FIFO) and
optionally by job priority. The algorithm does not support
preemption once a job is running.

C. Deadline scheduling implementation issues on distributed
systems
Hadoop schedulers have been implemented in order to

satisfy the needs of different companies (Amazon, Facebook,
etc). The Hadoop Fair Scheduler provides short response times
to small jobs in a shared Hadoop cluster. It also improves
utilization over private clusters or Hadoop On Demand [8].
The features of the Capacity Scheduler are close with the Fair
Scheduler, but the implementation is different.

None of these schedulers take care of some time constraints
for the jobs. We have shown that HFS aims to share the
resource fairly between the jobs while HCS works with pre-
defined resource allocation, but none of these schedulers
allows the user to specify a deadline that must be met. So, we
have to implement a new scheduler in order to use this feature
in Hadoop. But the three deadline schedulers presented in
section IIError! Reference source not found. are not directly
applicable to a distributed environment. If we take the example
of the LLF algorithm, we can see that there are many
important assumptions that are not true in our case.

We define the following scenario to show how a classic
LLF algorithm would work in a Hadoop environment: we
have a cloud composed of a number 𝑛!"of virtual machines
(VM), each VM has one processor, and we have a number 𝑛!
of cloud jobs (cloudlets) to run. Each cloudlet 𝐶! has a
deadline 𝐷!. Our aim is to meet the deadlines of each cloudlet.
Assuming that 𝑛! > 𝑛!", if we use the LLF algorithm to
schedule the cloudlets, while each VM will be running one
cloudlet, the other cloudlets will wait in queue sorted by laxity
(at any time). Then, two events are possible :

• Event 1: One of the running cloudlet finishes. Then
one VM becomes idle, so the scheduling algorithm will
start the first cloudlet of the waiting queue into the
newly idle VM.

• Event 2 : One of the waiting cloudlets (named 𝐶!) has
a lower laxity than one of the running cloudlets
(named 𝐶! currently running on 𝑉𝑀!). So, the
scheduling algorithm will pause 𝐶! and run 𝐶! on 𝑉𝑀!
instead. Then 𝐶! will be put into the waiting queue.
Assuming that 𝐶! is the first element of the queue, if

an event 1 happens, then 𝐶! will have to run on a VM
which might be different than 𝑉𝑀!.

In this scenario, both events are unrealistic in a cloud.
Indeed, during the event 1, the scheduling algorithm starts the
task with the least laxity on any idle VM. But this behaviour
does not take care of the data locality. As explained in [9], the
data management on a Hadoop cluster is done thanks to a
distributed file system. Each chunk is duplicated several times
on different hosts (three times by default on HDFS). So,
assuming that a cloudlet is actually an operation on a specific
chunk, it cannot be executed on any other host. The cloudlet
must be ran on a machine which has a local copy of the data, or
the chunk must be transferred to an idle VM.

During the event 2, the cloudlet 𝐶! starts its execution on
one VM, is then preempted, and finally finishes on another
VM. Once again, this procedure is unrealistic. The problem of
the data locality put in evidence on the event 1 remains true in
this case : 𝐶! cannot be resumed on any VM. Moreover,
although it is possible to implement a pause/resume task
feature on a different VM by using the procedure of task
migration (or VM) [16], this action has an important cost while
LLF is clearly defined for a null cost of task migration.

So, the first conclusion is that LLF is obviously
inappropriate to schedule tasks within a cloud. Arguably
enough, all other algorithms presented earlier will also
encounter the same issues.

A list of other problem related to deadline scheduling in
Hadoop is in [9]. The main problem highlighted in [9] is about
predictability of the execution time needed for a task

The number of slots that have been defined on the worker is
very important for the completion time of task. Let's imagine a
worker with 𝑛!" available Processor Elements (PE), and 𝑛!
available slots. The slot-to-core ratio will be !!

!!"
 . It means

that the local operating system of the worker will have to
schedule the execution of the 𝑛! tasks on 𝑛!" PE.
Consequently, if 𝑛! > 𝑛!", the execution times of the tasks on
the workers are closely linked to the OS scheduling algorithm
(which might be different between workers). Moreover, a large
number of slots on one worker can increase the number of disk
access and makes the execution time evaluation even harder.
Once again, it depends on the local OS management. The
influence of the Slot-to-Core ratio and the Multiple Concurrent
Jobs have been studied in [9].

III. THE CLOUD LEAST LAXITY FIRST (CLLF) PROPOSAL
In this section, we present our scheduling algorithm which

solves the issues highlighted above. We firstly discuss the
assumptions made during the design of the algorithm and we
then present the scheduling policies on the master and on each
worker.

A. Assumptions
CloudLLF is a non-optimal distributed deadline scheduler

for soft deadline tasks in the sense of the definition given in
section II.

We consider a cloud composed of 𝑛!" virtual machines.
Each VM has a number of Processor Elements (PE) 𝑛!" which

are all defined by a number of millions of instructions that can
be executed during one second (MIPS). Moreover, each VM is
also defined by an amount of memory (RAM), a bandwidth
(BW) and a capacity of storage (HDD). Each VM runs on a
single host. As our proposed algorithm tries to provide a
deadline meeting behaviour to the cloud, the predictability of
the total execution time of each task remains one of the most
important assumptions we have made. Running several VMs
on one single host implies a local scheduling by the host's OS
which considerably increases the hardness of the prediction of
the completion time of a task. We then decided to consider one
VM by host with the exact same hardware characteristics.

Thanks to the conclusions related to the Slot-to-Core Ratio
made in section II.C we decided to allow a number of
concurrent tasks on a VM equal to 𝑛!".

Finally, as described in [10], we consider that each data
chunk is duplicated 𝑛!"# times on the hosts.

B. Local scheduling on nodes
The local scheduling on each worker is really simple. It is a

First-In-First-Out (FIFO) queue as described by the Algorithm
1. The node notifies the master when one or more PE is idle
and if the node receives a new task while processing the
maximum number of concurrent tasks, the new task waits in
the FIFO queue for one PE to become idle. It is important to
notice that during a normal utilisation, the waiting queue size
should always equals zero thanks to the global scheduling
algorithm.

C. Global scheduling on the master
On the master node the global scheduling algorithm is

hosted. We choose a derivation of the LLF algorithm presented
in II.A.3). The main difference between LLF and our algorithm
is about preemption. We decided to implement a non-
preemptive algorithm because on a multiprocessor algorithm,
one of the assumptions is the following. If a task is paused on
one processor, it can be resumed on an other processor with a
negligable cost (as explained in [11]). This assumption cannot
be transposed to a distributed system that uses data locality

management. If a task is paused on a node, this task can only
be resumed on the same node. Indeed, there's only few nodes
having the task data locally, and among them, the only one to
know the current progression of the task is the one which
started it. If the resuming is done on an other node, the task
will have to restart from the beginning, so, the assumption
made earlier cannot be assumed any more. That's why we
decided to forbid the preemption in our algorithm.

The general idea of the algorithm is to sort the cloudlets by
laxities (the first has the lowest one). Giving this sorted list, the
algorithm takes the first element of this list and looks for a host
that locally have the data of the cloudlet and which also have at
least one free slot. If one matching host is found, the task is ran
on it, otherwise, the algorithm restart the same procedure using
the second element of the list. The implementation is described
by the pseudo-code of the Algorithm 2.

Algorithm 2 is derivated from the classic mono-processor

LLF algorithm. It is important to say that this algorithm must
be executed periodically, or on events (completion of a task,
arrival of a new task). In the fisrt case, the study in [10] of the
influence of the Slave-to-Master Heartbeat interval remains
true.

The differences between our algorithm and a classic LLF
algorithm are the data locality management and the non-
preemptive behaviour of our algorithm. Those differences
allow CLLF to avoid the issues highlighted in section II.C. We
have shown in the previous algorithms that once a task started
on a node, it can’t be stopped until its completion, and each
task must be ran on a worker which owns a local copy of the
data chunk corresponding to the task. Unfortunately, those

Data :
- 𝑐!"#$[] : Local cloudlets queue (in form of a

list).
- 𝑣!"[] : The state of each PE (idle/busy) on the

VM (in form of an array).
- 𝑥 : Iteration variable (Integer)

Procedure :
1 For 𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑣!" , 𝑥 ∈ ℕ do
2 . If 𝑣!" 𝑥 𝑖𝑠 𝑖𝑑𝑙𝑒 then
3 . . Run 𝑐!"#$[0];
4 . . Remove 𝑐!"#$[0] from 𝑐!"#$;
5 . . Set 𝑣!"[𝑥] as busy;
6 . End if
7 End for

Algorithm 1: Node FIFO scheduling algorithm

Data :
- 𝑐!"#$[] : Remaining cloudlets (in form of a list)
- 𝑐!"# : The current laxity of the cloudlet
- 𝑐!"# [] : The ids of the VMs which locally have the

cloudlet data (in form of an array)
- 𝑣!"#$ [] : The available VMs (in form of an array)
- 𝑣!" [] : The state of each PE (idle/busy) on the

VM 𝑣 (in form of an array).
- 𝑣 : Iteration variable (VM)
- 𝑥 : Iteration variable (Integer)

Procedure :
1 Update 𝑐!"# of 𝑐!"#$ with the current time ;
2 Sort 𝑐!"#$ by 𝑐!"# ;
3 For 𝑣 ∈ 𝑣!"#$ do
4 . For 𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐!"#$ & 𝑣!" ℎ𝑎𝑠 𝑜𝑛𝑒 𝑖𝑑𝑙𝑒 𝑃𝐸do
5 . . If 𝑣. 𝑖𝑑 ∈ 𝑐!"#$ 𝑥 !"# then
6 . . . Run 𝑐!"#$[𝑥] on 𝑣 if 𝑣!";
7 . . . Remove 𝑐!"#$[𝑥] from 𝑐!"#$;
8 . . . Set one more PE used on 𝑣!";
9 . . End if
10 . End for
11 End for

Algorithm 2 : Master CLLF scheduling algorithm

characteristics make CLLF loose its theorical optimality, but
the performances observed in practice are motivating.

We remark to give the algorithm a behaviour that handles
both static and dynamic priorities is quiet trivial. Indeed,
assuming that each task has been defined with a given static
priority 𝑝 ∈ ℕ, where 𝑝 = 1 is the least, the tasks might be
sorted not only using their current laxities, but also using their
static priorities.

Thus, we can define a rank 𝑅! for each task 𝜏! with a laxity
𝐿! and a priority 𝑃! as in equation (1).

 𝑅! =
𝐿!
𝑃!

 (1)

So, the algorithm remains the same except that the tasks are

now sorted by rank (the lowest first) instead of laxity.

D. Global characterization
Figure 1 illustrates a low-level global architecture of the

system. It shows the path followed by the cloudlets. All
cloudlets known before the execution of the algorithm are
sorted by laxity in a queue and are then sent to idle VMs. An
online cloudlet is directly inserted to the laxity-sorted queue at
the right place and is then sent to a VM as well. Figure 1 also
demonstrate the implementation to avoid the Slot-to-Core ratio
issue discussed in II.C.

Figure 1: Global representation - N hosts - 4 PEs by host

TABLE I. shows the main differences between the Hadoop
schedulers, the CloudSim schedulers and our scheduler.

It appears that the Fair Scheduler and the Capacity
Scheduler have a respectively a close behaviour to Time
Shared and Space Shared. The main difference is about the
data locality management. It is also important to notice that
none of the algorithms is preemptive. Moreover, we can
observe that our algorithm is the only one which has been
designed with a deadline-meeting approach. We will explain in
section IV.D that this behaviour allows this algorithm to
minimize the cost overhead implied when a task misses its
deadline.

TABLE I. COMPARISON OF THE SCHEDULERS

 Hadoop CloudSim
CLLF Fair

Scheduler
Capacity

Scheduler
Time

Shared
Space

Scheduler
Pre-reserved
Ressources - × - × -
Fair on
exec. time × - × - -
Data locality
management × × - - ×
Static
priorities
management

× × - - optional

Deadline
aware - - - - ×
Preemptive - - - - -

IV. PERFORMANCES
In this section, we analyse the practical capabilities of

CLFF. We firstly present the experiment scenario and we then
compare the perfornances (deadline meeting, execution time,
cost, data locality sensibility) of CLLF to the Space Shared
and Time Shared scheduling algorithm of Cloudsim.

A. Scenario
The performance measurement has been realized using the

CloudSim [4] framework.
The aim of this experiment is to show the ability of CLLF

to meet deadlines in situations where the other algorithms
(Time Shared and Space Shared) cannot. To achieve this, we
propose the following scenario. We define an homogenous
datacenter composed of 𝑛!"#$ hosts. Each host has the
following hardware specification :

• A number 𝑛!" = 4 of processing element. Each PE
has a speed of 800 mips.

• A Random Access Memory (RAM) of 2048Mo.
• An available bandwith of 10Gbit/s.
• A storage capacity of 1To.
We process 2,524 cloudlets on the previously defined

datacentre using three schedulers : CLLF, Time Shared and
Space Shared. The cloudlets lengths are not equal and each
cloudlet is given a deadline proportionnaly to its length. The
data chunks are duplicated on three different hosts and we
assume that the data placement has been done before the
beginning of the experiment.

B. Deadline meeting
Time Shared and Space Shared are the two cloudlet

scheduling policies given out of the box with CloudSim. Their
accurate description are available in [12]. They can be
considered quiet close from the Fair Scheduler and the
Capacity Scheduler of Hadoop as we can see on the previous
table. However, Space Shared and Time Shared do not handle
any form of data locality management. It's important to notice
that during the experiment, our algorithm did handled the data
locality problem and so, the comparison of the results is not
really fair for our algorithm regarding that it had to solve a
harder problem than the other algorithms. Despite this
unfairness, we show that the behaviour of our algorithm
remains more efficient to meet the deadline of each cloudlet.

We compare the number of deadline missed by each
scheduler for the given set of cloudlets and a variable number
of hosts.

Figure 2 : Comparison of the missed deadlines

On the Figure 2 is shown the result of this experiment. On
the x axis is the number of hosts used (3 to 400) and on the y
axis is the number of deadlines missed. According to these
results, we can clearly see that the Time Shared algorithm
becomes totally inefficient under one certain number of hosts.
In TABLE II. are the results extracted from the experiment
that uses 280 hosts.

TABLE II. RESULT FOR 280 HOSTS

 Number of missed
deadlines Missed deadlines ratio

Time Shared 2512 99.5%
Space Shared 827 32.8%

CLLF 301 11.9%

We can notice in this example that Time Shared misses

almost all the deadlines (which is the worst possible result)
while Space Shared is a little bit more efficient but still misses
more than two times more deadlines than our algorithm (which
is disadvantaged because of the data locality problem). The
second important result is the minimum number of host to meet
all the deadlines, and once again, our algorithm remains the
best. In the TABLE III. are the accurate results for the
experiment using 321 hosts. We can observe that our algorithm
meets all the deadlines while Time Shared has a pretty good
performance but remains not perfect and Space Shared still
misses the deadline of more than one cloudlet out of five.

TABLE III. RESULT FOR 321 HOSTS

 Number of missed
deadlines Missed deadlines ratio

Time Shared 48 1.9%
Space Shared 566 22.4%

CLLF 0 0%

C. Execution Time
We can observe on the Figure 3 the result of an other

experiment. In this case, we tried to measure the total
execution time of the job (all the cloudlets processed) for a

variable number of host. On Figure 3, the x axis is the number
of hosts used (3 to 400) and the y axis represents the total
execution time.

Figure 3: Comparison of the execution time

In this case, it appears clearly that the execution times of all

the three algorithms seems to be quiet identical. Once again, it
is important to remember that only our algorithm dealt with the
data locality problem which may imply an overhead on the
total completion time. Despite this, we observe performances
which are between Space Shared and Time Shared.

D. Costs
CLLF is a scheduler able to process soft deadline tasks.

Such a task has penalties when it misses its deadline. This
penalty is a function of the lateness of the task. So, it is
interesting to analyse the percentage of the computational
power used to process tasks after their deadlines in order to
measure the performance of CLLF to minimize the lateness of
the tasks. We call the percentage of the computation time used
to process a task after its deadline the cost of the task.

Figure 4 : Comparison of the costs

For example, a task 𝜏, with a deadline 𝐷!, has been
processed during 𝑇 seconds. We can distinguish two cases :

• 𝑇 ≤ 𝐷! : the task has been finished on time, the cost is
null.

• 𝑇 > 𝐷! : the task has overpassed its deadline, so the
lateness of the task is 𝐿! = 𝑇 − 𝐷! . The penalty

received by 𝜏 is then 𝑃! = 𝑓(𝐿!) with 𝑓(𝑥) being the
penalty function. So finally, the cost is 𝐶! =

!!
!

 .
On the Figure 4 is shown the sum of the costs of each

cloudlet implied by each algorithm in function of the number
of hosts. We can see that the best algorithm to minimize the
costs is CLLF. The integrals of the three curves on the Figure 4
are shown on the TABLE IV.

TABLE IV. INTEGRALS OF THE COST’S CURVES

 Cost Integral Normalized cost
Time Shared 165.56 1.29
Space Shared 134.37 1.05

CLLF 127.9 1

E. Data Locality
One of the most important characteristics of our algorithm

is that a cloudlet cannot run on a host which do not locally
have the corresponding data. The data move to an idle host is
forbidden in order to solve issues described as follows.

The main reason of this decision is related to the
predictability of the transfer time. Indeed, the move of a
cloudlet to a special host implies an upload time. But, this
duration is closely bounded to the network state at the moment
of the transfer. Moreover, in practice, the network bandwidth
might be used by another application. So, it becomes almost
impossible to predict accurately the uploading time and
regardless of this, the deadline of the moving cloudlet will not
change. In this case, the laxity is described by equation (2).
 𝑳𝒂𝒙𝒊𝒕𝒚 = 𝑫𝒆𝒂𝒅𝒍𝒊𝒏𝒆 − (𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆 + 𝑻𝒓𝒂𝒏𝒔𝒇𝒆𝒓 𝒕𝒊𝒎𝒆) (2)

Since the transfer time is unpredictable, the laxity becomes
undefinable. This vagueness is not acceptable in our case, and
this is why we decided to avoid it. It seems obvious that the
data placement has an important role in the algorithm's
efficiency. Indeed, if a host has locally only very long
cloudlets, there is a lot of chance that it will be the last host to
finish its tasks, and so it will increase the total duration time of
the job. So, it appears essential to make a decision when
choosing the machines on which a dataset will be hosted
regarding on which datasets are already located on those hosts
in order to avoid overloaded hosts.

For our simulation, we implemented an intuitive simple
algorithm which provides acceptable results. The pseudo-code
which describe it is in the Algorithm 3. The algorithm is used
to choose on which VMs should be duplicated the data chunks.
For each chunck, with 𝑛! duplication required, the algorithm
sums the already present cloudlets lengths on each VM, and
looks for the 𝑛! VMs with the minimum sum (charge).

We can clearly see the influence of the data locality on the
global performances of the algorithm. The pseudo periodicity
of the Figure 5 has a period of 3 hosts, which is also the
number of duplication of the data chunks for this experiment.

Using this algorithm, we remark an influence on the

number of deadlines missed by the system. Indeed, on the
Figure 5 is shown a zoom on the CLLF curve of the Figure 2.

Figure 5 : Pseudo-perodicity implied by the data locality

After several experiments, we remark that the best

performances depend on the criteria of equation (3).
 𝑛!"#$ = 𝛼×𝑛!"# ,𝛼 ∈ ℕ (3)

The α in the equation (3) is an integer. It means that the
best performances are met for a number of hosts which is a
multiple of the number of data chunks duplications. On the
Figure 6 is a 3D representation of the experiment result. On
the first axis is the number of data chunk duplication, on the
second axis is the number of hosts in the datacenter and on the
third axis is the number of missed deadlines.

Figure 6 : Influence of the data chunk duplication

We can see that the maximum number of missed deadlines
happens for a minimum number of hosts and duplications. And
the best performances are reached for a maximum number of
hosts and duplications. As CLLF runs the tasks on VMs which
have a local copy of the tasks data, the more duplication of
chunks there is, the more solution CLLF has. So, an important
diponibilty of the data allows CLLF to choose an efficient VM
for each task, thus, the performances are increased.

Data :
- 𝑐!"#$[] : List of cloudlets (in form of an array).
- 𝑐!"#[] : The VMs's ids which locally have the

cloudlet (in form of an array).
- 𝑐!"#$%& : The length of the cloudlet.
- 𝑣!"#$%& : The charge of the VM (the sum of its

local cloudlets's lengths).
- 𝑛! : The number of duplication of each data (3 by

default).
- 𝑥, 𝑦 : Iteration variables (Integers)
- 𝑣!"# : Temporary variable (VM) representing the

currently selected VM.

Procedure :
1 For 𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐!"#$, 𝑥 ∈ ℕ do
2 . For 𝑦 < 𝑛! , 𝑦 ∈ ℕ do
3 . . Mark as 𝑣!"# the VM with the 𝑣!"#$%& min ;
4 . . 𝑐!"#$[𝑥]!"# 𝑦 ← 𝑣!"# ;
5 . . 𝑣!"#!"#$%& ← 𝑣!"#!"#$%& + 𝑐!"#$[𝑥]!"#$%& ;
6 . End for
7 End for

Algorithm 3 : Data placement decision

V. CONCLUSION
This study presents a soft real-time scheduling algorithm

for distributed systems with data locality management. The
algorithm called CLLF is based on the popular LLF algorithm
and has been designed to take into account the practical issues
related to distributed applications. We demonstrate that LLF is
not applicable out of the box on a distributed system because of
its preemptive behaviour which implies a null transfert cost
from one node to an other, and we notice numerous other
issues about real-time scheduling on distributed system.
However, we show that a deadline-meeting approach to
schedule tasks over a cloud allows to minimize the extra-cost
of each task while the execution time of the job remains
acceptable. We demonstrate the importance of the data
placement within a cloud to avoid situations where one node
becomes a resource bottleneck, and we propose an algorithm
for the data allotment over a distributed file system such as
HDFS. The future step of our research includes integration of
more advance scheduling menagemetn to include resource
discovery means [17] for demonstrating the effectiveness of
our deadline algorithm in dynamic node formation. In addition,
we aim of applying the solution into large-scale virtualized
grids [19] and inter-cloud [14] scenarios to explore the
efficiency of the algorithm in higly dynamic and large-scale
cases.

REFERENCES
[1] Dean, J. and Ghemawat, S. (2004) “MapReduce: Simplified

Data Processing on Large Clusters,” OSDI'04 Sixth Symposium
on Operating System Design and Implementation, December
2004.

[2] Apache, “Hadoop Wiki Page,” [Online]. Available:
http://wiki.apache.org/hadoop/, Accessed 14/09/2012.

[3] CLOUDS Laboratory (2012), “CloudSim: A Framework For
Modeling And Simulation Of Cloud Computing Infrastructures
And Services,” January 2012. [Online]. Available:
http://www.cloudbus.org/cloudsim/, Accessed 14/09/2012.

[4] Mohammadi, A. and Akl, G. S. (2005) “Scheduling Algorithms
for Real-Time Systems,” July 2005.

[5] Apache, “Capacity Scheduler Guide,” February 2010. [Online].
Available:
http://hadoop.apache.org/common/docs/r0.20.2/fair_scheduler.ht
ml, Accessed 14/09/2012.

[6] Apache, “Capacity Scheduler Guide,” February 2010. [Online].
Available:
http://hadoop.apache.org/common/docs/r0.20.2/capacity_schedu
ler.html, Accessed 14/09/2012..

[7] Zaharia, M. (2009) “Job Scheduling with the Fair and Capacity
Schedulers,” in Hadoop Summit 2009.

[8] “HDFS Federation,” May 2012. [Online]. Available:
http://hadoop.apache.org/common/docs/current/hadoop-
yarn/hadoop-yarn-site/Federation.html, Accessed 14/09/2012.

[9] Phan, T. L., Zhang, Z., Loo, T. B., and Lee, I. (2010) “Real-
Time MapReduce Scheduling,” University of Pennsylvania

Department of Computer and Information Science Technical
Report, Vols. MS-CIS-10-32, October 2010.

[10] Ghemawat, S., Gobioff, H. and Leung, T. S., (2004) “The
Google File System,” Google Research Publicactions.

[11] Cho, H., Ravindran, B. and Jensen, D. E. (2006) "An Optimal
Real-Time Scheduling Algorithm for Multiprocessors",
Proceedings of the 27th IEEE International Real-Time Systems
Symposium.

[12] Apache, “Hadoop Wiki - PoweredBy,” [Online]. Available:
http://wiki.apache.org/hadoop/PoweredBy/, Accessed
14/09/2012.

[13] Sotiriadis, S., Bessis, N. and Antonopoulos, N. (2012).
Decentralized Meta-brokers for Inter-Cloud: Modeling
Brokering Coordinators for Interoperable Resource
Management, 9th International Conference on Fuzzy Systems
and Knowledge Discovery (FSKD'12), May 29-31, Chongqing,
May 29 – 31 2012, pp. 2475-2481.

[14] Sotiriadis, S., Bessis, N. And Antonopoulos, N. (2011). Towards
inter-Cloud Schedulers: A Survey of meta-Scheduling
Approaches, 6th IEEE International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing (3PGCIC-2011),
Barcelona, Spain, October 26-30, 2011, ISBN: 978-0-7695-
4531-8, pp. 59-66.

[15] Bessis, N., Sotiriadis, S., Xhafa, F., Pop, F. and Cristea, V.
(2012). Meta-scheduling Issues in Interoperable HPCs, Grids
and Clouds, International Journal of Web and Grid Services,
Volume 8, Issue 2, Inderscience, pp. 153-172.

[16] Sotiriadis, S., Bessis, N., Xhafa, F., and Antonopoulos, N..
2012. Cloud Virtual Machine Scheduling: Modelling the Cloud
Virtual Machine Instantiation. In Proceedings of the 2012 Sixth
International Conference on Complex, Intelligent, and Software
Intensive Systems (CISIS) (CISIS '12). IEEE Computer Society,
Washington, DC, USA, 233-240.

[17] Sotiriadis, S., Bessis, N., Huang, Y., Sant, P. And Maple, C.
(2010). Towards to Decentralized Grid Agent Models for
Continuous Resource Discovery of Interoperable Grid Virtual
Organizations, International Workshop on Distributed
Information and Applied Collaborative Technologies (DIACT-
2010), in conjunction with the 3rd International Conference on
the Applications of Digital Information and Web Technologies
(ICADIWT-2010), 12th -14th July 2010, Istanbul, pp. 170-175.

[18] Huang, Y., Bessis, N., Sotiriadis, S., Brocco, A., Courant, M.,
Kuonen, P., And Hirsbrunner, B. (2009). Towards an integrated
vision across inter-cooperative grid virtual organizations. in:
Proceedings of the 1st International Conference on Future
Generation Information Technology (FGIT 2009), 2nd Intl.
Conference on Grid and Distributed Computing (GDC 2009),
pp.120-128, Springer LNCS, Jeju island, Korea, December,
2009. pp. 120-128.

[19] Sotiriadis, S., Bessis, N., Huang, Y., Sant, P. And Maple, C.
(2010). Defining Minimum Requirements of Inter-collaborated
Nodes by Measuring the Weight of Node Interactions, 4th
International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS-2010), 15th-18th February, Krakow,
pp. 291-298.

[20] Sotiriadis, S., Bessis, N., Xhafa, F., and Antonopoulos, N. 2012.
From Meta-computing to Interoperable Infrastructures: A
Review of Meta-schedulers for HPC, Grid and Cloud. In
Proceedings of the 2012 IEEE 26th International Conference on
Advanced Information Networking and Applications (AINA
'12). IEEE Computer Society, Washington, DC, USA, pp. 874-
883.

