
SimIC: Designing a new Inter-Cloud Simulation platform
for integrating large-scale resource management

Stelios Sotiriadis, Nik Bessis, Nick Antonopoulos, Ashiq Anjum

School of Computing & Maths, University of Derby, Derby, United Kingdom
(s.sotiriadis, n.bessis, n.antonopoulos, a.anjum)@derby.ac.uk

Abstract — ‘Simulating the Inter-Cloud’ (SimIC) is a discrete
event simulation toolkit based on the process oriented
simulation package of SimJava. The SimIC aims of
replicating an inter-cloud facility wherein multiple clouds
collaborate with each other for distributing service requests
with regards to the desired simulation setup. The package
encompasses the fundamental entities of the inter-cloud meta-
scheduling algorithm such as users, meta-brokers, local-
brokers, datacenters, hosts, hypervisors and virtual machines
(VMs). Additionally, resource discovery and scheduling
policies together with VMs allocation, re-scheduling and VM
migration strategies are included as well. Using the SimIC a
modeler can design a fully dynamic inter-cloud setting
wherein collaboration is founded on meta-scheduling inspired
characteristics of distributed resource managers that
exchange user requirements as driven events in real-time
simulations. The SimIC aims of achieving interoperability,
flexibility and service elasticity while at the same time
introducing the notion of heterogeneity of multiple clouds’
configurations. In addition it accepts an optimization of a
variety of selected performance criteria for a diversity of
entities. The crucial factor of dynamics consideration has
implemented by allowing reactive orchestration based on
current workload of already executed heterogeneous user
specifications. These are in the form of text files that the
modeler can load in the toolkit and occurs in real-time at
different simulation intervals. Finally, a unique request is
scheduled for execution to an internal cloud datacenter host
VM that is capable of performing the service contract. This is
formally designed in Service Level Agreements (SLAs) based
upon user profiling.

Keywords: Inter-cloud meta-scheduling, inter-cloud simulator,
Internet of Things simulator, event-oriented simulation, cloud
service and resource management.

I. INTRODUCTION
During the latter years a variety of simulation

frameworks and tools have been presented by the academia
in order to mimic the behavior of complex systems based on
different requirements and use cases [9]. This reproduction
is particularly useful for large scale computing systems
wherein the utilization of resources for research purposes is
difficult to be achieved as involves highly hardware,
administrative, licensing and training costs. For the case of
distributed computing such as high performance computing
and grid a collection of platforms have been developed for
either simulating the resource management of local-
scheduling queue, or the meta-scheduling concept for large-
scale infrastructures based on heuristic decisions.

Recently, cloud computing has been emerged as a
promising paradigm wherein elastic services could be
delivered to users on a pay-on-demand model. Specifically,
services include hardware and software utilized by users in
the form of a request for certain resources. These are
sandboxed in virtual machines (VMs) that are available for
utilization for the desired time duration. However, as the
number of users increased the capacity of clouds in terms of
offering a diversity of services is analogous with the size
and capabilities of the internal cloud datacenter [7]. As the
trends show that users become more and more cloud reliant
in their every day activities, it is apparent that cloud
providers will require to develop a collaboration scheme for
allowing exchanging of services and VMs in order to meet
high computational demands [8].

This inter-cooperative setting named as inter-cloud [1]
allows multiple parties to exchange services for increasing
the quality of standards. In advance, the inter-cloud meta-
scheduling framework (ICMS), introduced in [8] describes
an architectural strategy along with the algorithmic model
for achieving such association. The ICMS is composed
from a set of sub-scheduling heuristics that aim to a) request
and accept connection with remote sites, b) distribute
requests within that system, c) search for available
resources, d) allocate the resource based on criteria, e)
execute a VM within this resource, and f) monitor the whole
procedure for keeping performance measures. The entire
functionality is based upon the meta-computing paradigm
[8] that suggests decentralized resource managers are placed
on top of a local decision-making system in order to
interconnect co-sites that have a corresponding architecture.

In order to design and configure such a topology it is
vital to allow service dissemination among clouds and to
monitor the performance of the deployed policies. The
solution of utilizing real resources from cloud providers e.g.
Amazon could lead to a vendor-oriented case. In addition,
the scale of the experiment will be limited to the
competency of the cloud provider. At last, cost of using
resources as well as inter-cloud configuration is beyond of
the control of the developer [3]. Therefore, this work
presents the ‘Simulating the Inter-Cloud’ (SimIC) toolkit, a
discrete event simulation framework that replicates an inter-
cloud service dissemination setting. Specifically, the toolkit
is developed using the SimJava package that allows event
exchanging among components in terms of messages that
are sending among the system entities at different time
intervals. Fundamentally performance metrics include
service makespan, VM execution times, request turnaround

2013 IEEE 27th International Conference on Advanced Information Networking and Applications

1550-445X/13 $26.00 © 2013 IEEE

DOI 10.1109/AINA.2013.123

90

times, throughput of entities, resource utilization, response
ratio, energy consumption of datacenters, VMs utilization
cost, and service latency figures.

Thus, this paper illustrates the SimIC by initially
presented the related cloud simulation toolkits and the
motivation in section II as well as the design requirements
of proposed framework in section III. The rest of the paper
is organized as follows, section IV illustrates the SimIC
installation specification and section V the cloud class
architecture and the core entities of the toolkit, section VI
describes the design of an inter-cloud meta-scheduling case
study and section VII presents the experimentation of the
SimIC as well as a simulation scenario and performance
analysis and results. At last we conclude our work in section
VIII by discussing the conclusions and the future directions
for adding additional built-in features.

II. THE MOTIVATION IN DEVELOPING SIMIC
Over the years, a variety of simulation toolkits have

produced by developers in order to meet the different needs
of newly emerging infrastructures. This is because real test
bed experiments are difficult due to the large number of
difference requirements. The problem gets worse when
evaluation of various resource discovery and scheduling
policies is required through several different scenarios. In
such cases, the actual experiment is limited to the real
testbed system scale and capabilities. An alternative is to
use simulation tools that allow researchers to evaluate the
hypothesis prior to the software development [3] and to
implement and test the actual behavior of the system in
several scenarios, metrics and criteria. In the case of large
scale distributed systems (e.g. grids) a variety of simulation
toolkits has been produced for exploring job allocation on
high performance systems. Simulators such as GridSim and
Alea [4] support the modeling of grid heterogeneous
resources together with various job policies.

However, for the case of clouds and inter-cloud none of
these solutions can address the arising application level
requirements. This is because of the application-oriented
cloud emphasis and of the elasticity of services in the pay-
on-demand model [2]. For that reason authors in [3] present
the CloudSim simulation framework that aims to a pay-on-
demand model wherein subscribed services are delivered to
the users in an elastic fashion. A different simulation case
for clouds is the iCanCloud simulator [5] it’s targeted to
conduct large experiments and to provide a flexible and
fully customizable global hypervisor for integrating any
cloud brokering policy. By default, for the inter-cloud case,
none of the aforementioned solutions could be able to
mimic such functionality without extending the distribution
package. This is because our core design elements are meta-
computing inspired e.g. the large scale that the system could
expand, the decentralization of the distributed resource
managers, the dynamic adaptability and the real-time
service orchestration.

To this extend, our modeling decision has been
concluded to the development of the SimIC simulation
framework that is fundamentally inspired by the CloudSim
toolkit. By using the SimIC a modeler could configure a

diversity of inter-clouds in terms of datacenter hosts and
software policies wherein desired number of users could
send single or multiple requests for computational power
(cores, CPU, memory, storage, bandwidth), software
resources (measured empirically in clocks per instruction
and million of instructions per second) and duration of VM
utilization. It should be mentioned that the toolkit includes a
variety of meta-scheduling inspired characteristics for
achieving job dissemination, resource discovery services,
dynamic workload management, real time scheduling of
jobs in VMs, static and dynamic VM deployment policies
and VMs migration situations. The inspiration of the design
of the core entities of the SimIC came from the CloudSim
framework [3], however our classes have been re-designed
and considerably extended to include additional features.

III. THE DESIGN REQUIREMENTS
Principally, SimIC includes a variety of entities that

have been modeled for achieving a diversity of meta-
computing inspired requirements as follows:
• Large-scale distribution of job requests among meta-

brokers as happens in grid systems. In SimIC meta-
brokers as illustrated in [6] decide the sub-cloud to
execute services by using wide service dissemination
algorithms.

• Decentralized topology of meta-brokers including
peer-to-peer (P2P) inspired resource discovery. SimIC
allows meta-brokers to transfer information and
address resource discovery implementations by
allowing hashing of meta-brokers ids in P2P networks.

• Static and dynamic management policies of current
workload for each job submission. The cloud (local-
broker) is dynamically aware of the current
computational capacity for deciding whether to
execute jobs locally or forwarding the request to the
personalized meta-broker for further distribution.

• Static and dynamic SLA matchmaking policies among
meta-brokers allow an initial criterion of service
execution capability of a cloud.

• Static and dynamic instantiation of VMs with regards
to history records. A hypervisor is responsible for
deciding whether to generate a new VM (static) or
migrate one (dynamic) from a SAN storage device.
The decision is based in historical delegation records
from previous users submissions to the inter-cloud.

• Real-time job scheduling in VMs according to a
variety of heuristic scheduling criteria (e.g. preemptive
and non-preemptive cases). The default solution is by
triggering entities at regular intervals in order to
release deferred queues or to check if the queue length
has been grown to certain sizes (modeler definition).

• Queuing of VMs according to selected static
schedulers. Default developments include first come
first serve (FCFS), shortest job first (SJF), earliest
deadline first (EDF) and priority scheduling (PS).

• VM migration according to cloud provider
requirements. This includes backup of VMs to storage
devices in case of emergency.

91

• Re-active management of heterogeneous service
submissions in the form of VMs.

These requirements are the core of the SimIC
framework as include the key aims of our development.
Next the installation specification is presented.

IV. INSTALLATION SPECIFICATION
The SimIC (version 1.1) is based on the process event

simulation API of the SimJava version 2 distribution
available on [10]. The SimIC (version 1.1) has been
developed using the Java™ 2 Platform (JDK 1.6) and
includes a jFreeChart 1.0.14 library [11] for producing
charts and diagrams for a selection of performance metrics
for the most of the entities including service makespan, VM
execution times, request turnaround times, throughput of
entities, resource utilization, response ratio, energy
consumption of datacenters, VMs utilization cost, and
service latency figures. An extended discussion of selected
metrics for achieving inter-cloud performance evaluation is
presented in [8].

V. THE SIMIC ARCHITECTURE
SimIC involves automation of service distribution that

ranges among decentralized meta-brokers. These are placed
on the top of each cloud in order to communicate with
others as in a distributed and interoperable topology (e.g.
grid computing). The crucial factor of dynamics
consideration is implemented by allowing the load of
various heterogeneous user specifications (in the form of
text files) that contain hardware, software and timing
requirements to be are uploaded within the simulator. The
architecture of the simulator involves a variety of intra-
cloud (e.g. datacenter) and inter-cloud entities (e.g. meta-
brokers or decentralized resource managers) as well as
supporting classes for service distribution, importing user
specifications, exporting performance results and drawing
simulation charts. In addition, the whole framework has
been designed in a segmental format wherein modelers can
easily adapt entities; edit their number and relationships as
well as select or create various allocation policies by
extending current schedulers or creating new instead.

By using this design we ensure a suitable solution for
implementing various simulation cases in order to identify
cloud and inter-cloud meta-scheduling benchmarks. This
will be the level to compare with novel strategies such as
hosts’ allocation policies, VMs dynamic deployments and
allocation, service request distribution etc. SimIC
incorporates a variety of user requirements that implement
different activities of a distributed cloud system. This
design decision increases dynamic factors such as user and
service diversity, service elasticity, heterogeneity on
resources, scalability of VMs, decentralization and
interoperability that are crucial to be defined in order to
achieve a supportable simulation. Having said that, this
section demonstrates the entities of the SimIC that are
entitled as follows:
• The UserCharacteristics class instantiates the current

service information for each user by incorporating

hardware and software requirements as defined in two
different text files.

• The ServiceCharacteristics class calculates an initial
performance request by accepting the user specified
program instructions and cycles per instructions part
of the UserCharacteristics. These indicators consider
the initially required performance.

• The OutputUserRequirements class generates a
dynamic user profile that includes a variety of
hardware, software (heterogeneous requirements) and
initial performance request measurements (e.g. the
millions of instruction per second for a given
application(s)). Parts of this profile are accessible from
each or specific components of the SimIC v.1 and
accessibility subjects to internal information
exposition desired levels.

• The OpenProfile class gets each specific user
requirement (e.g. user desired CPU, memory etc.) as
defined in the user profile for passing information to
the various SimIC entities. This is related with the
information exposition levels.

• The User class is responsible for forwarding a number
of requests for VMs, wherein each request scheduled
after a specific processing delay to a dedicated inter-
connected cloud interface also named as meta-broker.
This relationship is a many (users) to one (meta-
broker). Each request could be heterogeneous and
send after a specific delay for simulating the internal
entity latency of the user. In addition, each request
includes information about the job identification,
specification, an indication to the user profile, and
other relevant to simulation data.

• The printText class creates a result file wherein prints
each entity submission logs that include the date, time
and current submission specification and simulation
time (dedicated delay). In addition, this class is
instantiated from various entities that use the log
functionality in order to print specific simulation times
that are about to be monitored by the modeler.

• The Meta-broker class implements the interoperability
functionality of the SimIC. Specifically, each meta-
broker is interconnected with one or more meta-
brokers depending on the simulation experiment use
case. The modeler could expand this functionality to
address resource discovery based on P2P chord
solution. This solution has being implemented as well.
By this way requests for services could be distributed
within an inter-cloud from meta-broker to meta-broker
in the case that the initially contacted resources are not
capable of performing the request or the group of
requests submitted by the user. This might be due to
low computation resources or cloud incompetency on
executing certain software specification (limitation on
licensing). The SimIC default meta-brokering
topology includes that each meta-broker is linked to
one (next) meta-broker and so on. At last each meta-
broker is linked to a terminal entity (Bucket) that

92

collects requests that have been unable to be executed
in order to keep a log of unfinished jobs.

• The Bucket class represents the termination entity that
collects the unexecuted jobs and logs job profile
information. These could be either re-directed to the
inter-cloud after a regular interval or to be terminated
if there is a case of SLA misses matchmaking. It
should be mentioned that this class could be
instantiated as a terminal to other entities as posed by
the use case.

• The Cloud class includes an SLA matchmaking
mechanism for deciding whether the specification of
user requirements could be executed to the local
resources. In addition, datacenter (host) current
performance is dynamically calculated for measuring
the available computational power. If there is cloud
capability the request(s) is(are) forwarded to the
internal cloud entities (e.g. the datacenter). If the cloud
local resources are unable to execute the request or
some of the set of request(s) submitted by the user it
returns the event or events back to the initiated meta-
broker that passes it to the next inter-connected meta-
broker for SLA matchmaking with its local cloud skill.
Each event that is returned back to the meta-broker
contains the additional latency of the cloud decision
making time, as well as the interlinking meta-broker
processing time (added to the original delay).

• The OpenHost class imports each host characteristics
from a text file to the simulator by allowing the SimIC
to access hosts hardware characteristics (e.g. host
name, CPU, Cores number, Memory, Storage,
bandwidth etc.), while the OpenHostsList opens a list
from a text file that contains the individual hosts
dedicated to the specific cloud by accessing their
names. Both classes are instantiated by the cloud for
measuring current computation competency
dynamically.

• The Accounting class generates the energy
consumption and total costs metrics based on the user
request for computational resources according to
desired VM usage hours and proficiency. This is
achieved by opening the user profile that is matched
with the user id.

• The Datacenter class accepts events for VMs
deployment from the cloud that is happened through a
hypervisor. By fundamental this class implements an
accounting functionality for calculating costs and
energy consumption performance measures while it
passes all events to a local allocation policy utilizer.

• The Hyper class represents the hypervisor and is
responsible for collecting requests for VMs from the
datacenter class by accessing the host and VM
allocation policies. The first is responsible for the way
in which hosts are selected and the second measures

the computational power of a host to be shared among
current or next VM requests. By default both policies
are implemented in a FCFS fashion and their modular
structure easily allows the utilization of other
scheduling algorithms. The modeler could select
among algorithms such as the SJF, EDF and PS that
have been developed within the hypervisor. It should
be mentioned a request(s) that cannot be executed
directly (waiting requests) are placed in the deferred
queue that organizes the scheduling according to the
desired scheduling algorithm. The hyper class finally
instantiates the OpenHosts, OpenHostsList, and the
OpenProfile classes for calculating the current
available computational power and the desired
computational resources of the specific event. At last,
this component deploys a VM by considering the VM
generation delay. This is added to the total delay of
simulation.

• The HyperCall class generates an internal call thread
to the Hyper class in order the last one to release the
jobs that have been scheduled in the queue according
to a heuristic algorithm. The time interval value is
defined by the modeler (static value) or consistent with
a probability-generated number. In addition, the
modeler could generate various instances of this class
according to the desired simulation scenario.

• The HostCharacteristics class imports each specific
host requirement as defined in a host text file for
parsing information of the various SimIC entities e.g.
in hyper class.

• The Hosts class represents a static computing
machine. The class gets an event from the hyper for
requesting an instance of the host characteristics.
Eventually, this adds an addition delay to the
hypervisor decision for allocating a VM. This is the
latency of the host for starting job execution.

• The VM class develops the service request execution
paradigm that sandboxes the user profile. This is the
entity that an event (request) ends after a specific VM
processing time. In addition, the VM class generates a
result file that principally includes VM specification
and performance measures such as event id, event
delay, the VM name, the metabroker name that
executes the request, the user name that submits the
service, the VM execution time, the makespan of the
VM, the energy consumption and the total cost. In
addition, user turnaround times (in case of more than
one requests), response ratio (turnaround time divided
by the execution time of a job), throughput, utilization
levels along with average values for each of the
aforementioned which are calculated herein.

• The VMRescheduler class allows a VM to be re-
selected (re-deployed) for service execution after
finishing initial request. This allows a user to re-

93

Figure 1: The default message event model for architecting entities of the SimIC framework

instantiate the same profile faster than re-developing
the VM from scratch. By this way an overall
optimization of the VM performance could be
observed.

• The VMMigrationScheduler is a class for defining the
VM migration strategy among various clouds. Its
modular structure allows VMs to be transferred to
different cloud SAN devices for various cases (e.g.
when high workloads occur or when metrics approach
a standard equilibrium, or in case of a sensor
indication as a trigger for backing-up reasons or
disaster cases).
• The SANStorage class generates an extra hardware
space for extending internal hosts storage as well as to
be used as a temporary saving storage when migration
happens. A cloud could have various SAN storage
spaces for external VM storage according to the
definition of the experiment.

• The MigrationSensor class defines a trigger for
starting the VM migration into an external
SANStorage space. Specifically, this class is set by the
modeler to act on specific or random simulations after
a time interval. In advance, the modeler has the
opportunity to define other sensors (e.g. heat) that
could perform reactively for different situations.

• The CreateResults class generates a log file that
contains the performance measures of the specific sub-
cloud for various criteria. These are the average delay,
the turnaround time, the average execution time, the
average makespan, average energy, average cost per
hour, the throughput, the utilization percentage, the
response ratio, and the performance measure presented
in [8].

• The DrawVMs(Performance_Metric) e.g. the
DrawVMsMakespan class plots a jpg diagram for each
of the selected benchmark that are stored in a default
directory. For that reason the jFreeChart package is
utilized.

To conclude, the aforementioned entities demonstrate
the core classes of the SimIC (v1.1) framework. The default
relationships of the entities are demonstrated in figure 1. A
more detailed discussion on the relationships and the meta-
brokering dissemination algorithm is given at the next
section. By using the default configuration, the modeler
could define different experiments that implement a unique
simulation case containing a topology of entities for a
required scenario. In our case we will define an inter-cloud
meta-scheduling scenario in order to produce the evaluation
study and the experimental results. In addition, a variety of
values for different experiments e.g. users, number of jobs,
delays, etc. could be defined in simulation classes in order
to represents the experimental case.

VI. DEVELOPING A DEFAULT SIMIC USE CASE
This section presents a design case study discussion of

the SimIC including a job specification on information
processing and retrieval as well as job distribution and
allocation. Initially, the SimIC instantiates the user class
that contains a number of internal data that are given by the
modeler (user name, job number, delay and SLA
specification) prior to the simulation started point. The class
also loads the user characteristic requirements (presented in
table 1) and generates a user profile (with data from table 1
in addition to million of instructions per second (mips), total
user job number and submission cloud information).

TABLE 1: USER SPECIFICATION FILE FORMATION

User specification text files
Hardware Requirements Software Requirements

Username: u_ste_1
HostOS: Linux
Platform: Intel
Memory(GB): 2
CPU-cores: 2
CPU-speed: 3000
H/D-Controller: SAN
Storage-HD: 1000
BW: 1000

Username: u_ste_1
SW1: spec_1_cloud_1
Instructions: 1000000000
CPI: 3
Hours: 240
Deadline: 555
Priority: 4

94

The default level of SimIC allows full data exposition to
the all entities. At last the class sends to the linked meta-
broker a request or a set of requests for job allocation(s)
along with job data specification (e.g. job id). Each request
is forwarder to the meta-broker class that is responsible for
dynamically checking its local cloud SLA level and
computational capacity. This is to say that the cloud class
(representing the local-broker or local resource management
system) informs the meta-broker for current resources
available in datacenters. If the cloud is unable to execute the
job due to SLA miss-matching or limited computing power
(e.g. lower CPU than demanding), the requesting meta-
broker forwards the job to the next interlinked meta-broker
(default solution) or into a group of decentralized meta-
brokers with regards to the desired scenario. Each
responding meta-broker in the default case checks internal
capacity of executing the request, thus it decides to execute
the job locally or to forward the job to an inter-connected
one. The decision making process is based on dynamic
consideration of current workload that being executed or it
is already relying in a deferred queue.

In the decentralized case the meta-broker forwards a
request for SLA and computational performance to
responding meta-brokers that reply with such information.
Then the requesting meta-broker sends the job to the first
one that responds faster. The resource discovery mean is
based on a P2P chord solution [8]. If a job cannot be
executed within the inter-cloud then it is forwarded to the
bucket class for keeping a log of unfinished (unexecuted)
jobs. However, if a job cannot be executed due to SLA
mismatching then the bucket terminates the event, however,
if the job cannot be executed because of low computational
resources the modeler decides whether to re-forward the job
when availability occurs (enter a matching deferred queue)
or to terminate the job.

In the case that a job is successfully selected for
execution is send to the datacenter class for instantiating the
accounting, billing, energy logs and regional information.
The datacenter class instantiates the class called hypervisor
(hyper) and is an entity for managing hosts and generating
VMs. The last one offers key functionalities with regards to
dynamic and real-time scheduling of jobs in host VMs. This
entity generates a deferred queue with incoming events for
job executions and releases the queue after an interval
(given by the modeler) or after reaching a number of
specific jobs. In the first case the simulator generates a
trigger event from the CallHyper class for releasing the
queue after a specific time interval given by the modeler.
This deferred queue offers scheduling of jobs in FCFS, SJF,
EDF, or PA algorithm. A modeler can easily develop new
heuristic scheduling algorithms within the hypervisor.

In the case that an event is scheduled for execution the
hypervisor instantiates the static or the dynamic VM
deployment policy. The first case generates a VM from
scratch by allocating computational resources, installing
operating system and software (involving high latencies),
while the second case instantiates a VM relying in a remote
SAN storage device by migrating the state of its execution
within the host. The dynamic case implies opens a history

record profile that matches user names and VM profiles for
minimizing the latency of VM deployment. For each case
the hyper class allocates host power from the host class for
achieving VM execution (sandboxing the job request by the
VM class). In addition, the VM class generates logs with
performance metrics and plots diagrams for each entity
separately.

It should be mentioned that the whole of the entities
include delays that postpone the job execution within the
VM due to latencies in communication. These values are
given either by the developer or generated according to a
probability function (discussed in [refs]). Additionally,
during the simulation, traces are produced and stored in text
files for allowing the monitoring of job execution, as well as
the user profile is accessed by various entities. The next
section presents a simulation experiment and the output of
results as produced by the SimIC.

VII. EXPERIMENTAL SCENARIO OF SIMIC
The scenario includes the job distribution of the default

SimIC configuration. The assumption is that 4 users request
for different requirements (VMs) by each of which is
submitting two identical events. The submission happens in
an inter-cloud of 4 sub-clouds and each one generates a
hypervisor for orchestrating VM allocation on hosts. For the
sake of the experiment we have setup the delay of all
components to be 10ms. and we have utilized a priority
algorithm as queuing solution. In addition we make use of a
dynamic VM instantiation that implies that there is one VM
in the SAN storage for each of the users as they are used the
same VMs in the past. This involves lowest delays in VM
generation. At last the simulation setting includes that each
user enters to a cloud according to its id (user 1 to cloud 1,
user 2 to cloud 2 etc.), however whit different SLA
specification. For example user 1 requires a specification
that can be matched with cloud 1 and cloud 4, user 2 can be
matched with cloud 2 and cloud 3, and so on. The job
distribution happens by the meta-broker in order to
demonstrate the allocation of jobs to the first capable for
performing execution cloud.

Each request (either from the same or not user) is treated
by the SimIC as unique. For instance, the user requests for a
VM with e.g. 0.25 of 1 host performance and executes a set
of programs with 100*106 instructions, and CPI (cycles per
instructions) = 3 (300 cycles /100 instructions) in a machine
with clock rate 1000 MHz (0.25 of 4000MHz of Host with
single core). The performance of the VM is calculated as
follows:

�������	
������ �

��������	
�

�������
����

���������� �
�

�����

��
�

����������

Thus the result is estimated by the next calculation.
�������	
������ � ��� � ��

�
��� ���� �

�

����
�� � ������

�
���� �������

The performance of the VM is calculated to 3.33 as
follows:

����	���
���� �
�

�������	
������

� ����

95

In addition an analogous metric (mips) as a figure for
calculating requesting performance is calculated by the
ServiceCharacteristics class as follows:

����� � �
����������

���
� ��

��
��

The hosts of the experiment are included in a text file
that contains the names of each cloud host. Table 2
demonstrates a typical host list along with the first host
configuration of the list.

TABLE 2: HOST SPECIFICATION FILES

User specification text files
Host List 1 Software Requirements

Cl.St.Hosta.1
Cl.St.Hosta.2
Cl.St.Hosta.3
Cl.St.Hosta.4

HostName: Cl.St.Hosta.1
HostOS: Linux
Platform: Intel
Memory(GB): 10
CPU-cores: 1
CPU-speed: 10000
H/D-Controller: CD-DVD
Storage-HD: 10000
BW: 10000

The following screenshots demonstrate the output

capabilities of the simulation for monitoring performance
criteria. Figure 2 shows the output of cloud 1 with regards
to the collection of metrics as well as each job that has been
executed in this cloud. It should be mentioned that user 1
jobs have the same event id due to their identical
configuration.

Figure 2: The log of a typical sub-cloud (cloud 1) of the inter-cloud that

includes performance metrics values

Figure 3 shows the output of the inter-cloud that
involves the collection of all jobs being executed. It should
be mentioned the bucket log is 0 (all jobs have been
executed). Also, each hyper shows the number of jobs that
executes within its queue.

Figure 3: The output of the simulator with regards to the inter-cloud job

execution pool.

Figure 4 shows the VM makespan diagram for meta-
broker 2. Particularly the makespan represents the
productivity of the entity (e.g. the throughput value). Other
metrics are also available for generating charts e.g. the
turnaround time [8] is calculated as follows:

������������� � �
������� � �����

����� � ���������� � ��
�

�����

� �����
��������

Figure 4: The VM makespan diagram.

Figure 5 shows the SimJava simulation report (a part of
the report) that include specific information for each of the
entities that include event exchanging during the simulation.

Figure 5: The SimJava simulation report of the SimIC.

At last figure 6 shows a part of the simulation log that
includes the job distribution among components including
delays and names of entities that exchange events.

Figure 6: The traces of the events during simulation.

To conclude, this section presented the SimIC
capabilities in generating results and outputs. A more
detailed discussion of the metrics that are used could be
found in [8]. The last work demonstrates in detail the
algorithms of job distribution along with sequence diagrams
that demonstrate event-exchanging aspects.

96

VIII. CONCLUSION
This study presented herein introduces the SimIC toolkit

(version 1.1) for simulating inter-cloud environments. The
design and implementation of the solution is based on meta-
brokers that are responsible for service dissemination by
having spontaneous and dynamic information of the
environment. This is more realistic and related to the
granularity of an inter-cloud system. The meta-broker
profiles the identifiers of other meta-brokers as well as
communicates with the local resources for information
exchanging. In contrast, centralized and hierarchical
schedulers require having a complete knowledge of the
actual resource meta-actors, thus representing a non-
realistic approach for large size settings. This includes the
number of hosts, number of services submitted, the
workload of each hosts, the number of virtual machines
(VMs) and the topology of the system at any given time.

In contrast, the SimIC implements the ICMS
algorithmic structure [8] that relies upon the distributed
scheme, and assumes that this kind of information is
incomplete and the services received from the meta-brokers
are transient and assigned to local or remote hosts
(resources). This is inspired by the distributed scheme that
allows services to be transferred to distant hosts for
achieving a performance criterion (e.g. better local resource
utilisation, thus leading to global load equilibrium). In view
of that, the ICMS utilizes the meta-brokering architecture
for illustrating the inter-cloud service submission,
distribution, allocation and execution orientation.

The meta-scheduling decision making process is based
on random services request from a user or a set of users that
are clients of a sub-cloud datacentre and access it though a
meta-broker. The inter-cloud facility distributes the request
for service and encloses services into VMs (a procedure that
called sandboxing) that belong to an interoperable sub-
cloud. Finally, the toolkit offers significant advantages by
allowing the simulation of users and job submissions that
allow decoupling of users and resources based on SLA
management cases, dynamic workload decision-making
services and real-time scheduling sandboxing of jobs in
VMs.

The next development steps include the realization of a
collection of requirements for adding built-in SimIC
capabilities as follows.

a) Importing energy efficiency measures for optimizing
message distribution among entities.

b) Developing meta-scheduling operations on meta-
broker level for total decentralized solutions.

c) Increasing the modularity of the system for assisting
modelers to define new entities by improving class
design.

d) Running various simulation experiments for exploring
benchmarks performance based on the CloudSim
framework.

e) Adding VM migration cases for scenarios to be
available to the modeller. (e.g. disaster case backup).

f) Allowing host scheduling policies to include time-
sharing scheduling of multi-cores.

g) Empower simulator to simulate Internet of Things
scenarios by implementing a collection of sensors that
could utilize the backbone of the inter-cloud
infrastructure including more intelligence data
management (end users could be everyday people
devices e.g. smart city case).

Finally, it should be mentioned that the toolkit is not yet
available to for distribution as it still under development.
However, modellers that require executing inter-cloud or
Internet of Things scenarios are encouraged to communicate
with us for collaboratively improving the quality of SimIC.

REFERENCES
[1] Bessis, N., Sotiriadis, S., Cristea, V., Pop, F., Modelling

 Requirements for Enabling Meta-Scheduling in Inter-Clouds and
Inter-Enterprises, Third International Conference on Intelligent
Networking and Collaborative Systems (INCOS 2011) , Nov 30 -
Dec 2 2011, Fukuoka, Japan. pp. 149-156

[2] Bessis, N., Sotiriadis, S., Xhafa, F., Pop, F. and Cristea, V. (2012).
Meta-scheduling Issues in Interoperable HPCs, Grids and Clouds,
International Journal of Web and Grid Services, Volume 8, Issue 2,
Inderscience, pp: 153-172.

[3] Buyya, R., Ranjan, R., and Calheiros, R. N., (2010) InterCloud:
Utility-Oriented Federation of Cloud Computing Environments for
Scaling of Application Services, Algorithms and Architectures for
Parallel Processing (2010), Volume: 6081/2010, Issue: LNCS 6081,
Publisher: Springer, Pages: 13-31.

[4] Klusáček, D., and Rudová, H. 2010. Alea 2: job scheduling
simulator. In Proceedings of the 3rd International ICST Conference
on Simulation Tools and Techniques (SIMUTools '10). ICST
(Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), ICST, Brussels, Belgium,
Belgium, , Article 61 , 10 pages.

[5] Núñez, A., Vázquez-Poletti, L., J., Caminero, A. C., Castañé G. G.,
Carretero, J., and Llorente, M. I., storage networks. iCanCloud: A
Flexible and Scalable Cloud Infrastructure Simulator. Journal of
Grid Computing, Volume 10, Number 1 (2012).185-209. Springer.

[6] Sotiriadis, S., Bessis, N. and Antonopoulos, N. (2012).
Decentralized Meta-brokers for Inter-Cloud: Modeling Brokering
Coordinators for Interoperable Resource Management, 9th
International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD'12), May 29-31, Chongqing, May 29 – 31 2012,
pp. 2475-2481.

[7] Sotiriadis, S., Bessis, N., Xhafa, F., and Antonopoulos, N. 2012.
From Meta-computing to Interoperable Infrastructures: A Review of
Meta-schedulers for HPC, Grid and Cloud. In Proceedings of the
2012 IEEE 26th International Conference on Advanced Information
Networking and Applications (AINA '12). IEEE Computer Society,
Washington, DC, USA, pp. 874-883.

[8] Sotiriadis, S., Bessis, N., Kuonen, P. And Antonopoulos, N. (2012).
The inter-cloud meta-scheduling framework: Algorithms and
performance measures, The 27th IEEE International Conference on
Advanced Information Networking and Applications (AINA-2013),
Barcelona, Spain, March 25-28, 2013

[9] Sotiriadis, S., Bessis, N., Huang, Y., Sant, P. And Maple, C. (2010).
Defining Minimum Requirements of Inter-collaborated Nodes by
Measuring the Weight of Node Interactions, 4th International
Conference on Complex, Intelligent and Software Intensive Systems
(CISIS-2010), 15th-18th February, Krakow, ISBN: 978-0-7695-
3967-6/10, pp: 291-298.

[10] SimJava process oriented simulation package, Available at:
http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/,
Accessed 12/09/2012

[11] jFreeChart package, Available at: http://www.jfree.org/jfreechart/,
Accessed 12/09/2012

97

