
A JADE Middleware for Grid inter-cooperated Infrastructures

Stelios Sotiriadis1,2, Nik Bessis1,2, Ye Huang3, Pierre Kuonnen4, and Nick Antonopoulos1
1School of Computing & Maths, University of Derby, United Kingdom

2Department of Computer Science and Technology, University of Bedfordshire, United Kingdom
3Department of Informatics, University of Fribourg, Switzerland
4Department of Information and Communication Technologies,

University of Applied Sciences Western Switzerland
2(stelios.sotiriadis, nik.bessis)@beds.ac.uk, 1(n.bessis, n.antonopoulos)@derby.ac.uk

3ye.huang@unifr.ch, 4pierre.kuonen@hefr.ch

Abstract— During the past few years much effort has been put
into developing interoperable grid models suitable of defining
a decentralized control setting. Such environments may define
new rules and actions to internal Virtual Organisation (VO)
members and therefore posing new challenges towards to an
extended cooperation model of grids. Particularly, VO
members’ knowledge may be expressed in the form of
intelligent agents thus providing a more autonomous solution
of communicating members. Herein we present a mobile agent
middleware for Grid interoperable infrastructures. Facing the
enlarging scale of Grid, the proposed middleware aims to
extend the knowledge of a specific neighbouring of Grid
members (VO) in relation to the addresses and the physical
resources of known and unknown nodes which may join the
Grid VO. The internal data are structured in a rational
sequence and stored within a public profile of each member
called metadata snapshot profile. The middleware is designed
by employing the Java Agent Development (JADE) framework
in which mobile agents are travelling throughout the domain
and by collecting and updating internal data they extend the
size of the VO. The interoperable standard is achieved by using
the Critical Friends Community (CFC) model, as the mean to
fulfil the inter-cooperation model.

Keywords: Grid Computing, Critical Friends community,
Intelligent Agents, Migration Mobile Agents, Java Agent
Development Framework

I. INTRODUCTION
As Grid computing is defined a synchronized effort of

multiple resources, which are typically inter-connected in
loosely coupled random topologies, for solving a scientific or
technical problem [1]. Those resources constitute a
neighbouring of interacted members called a Virtual
Organisation (VO). This form of distributed computing tends
to be distinguished from the conventional systems mainly
based on the heterogeneous attitude of their members.
Parallel to Grid, Intelligent Agents offer an autonomous
environment of problem solvers capable of self-directed
actions in flexible environments. The Grid notion alongside
with the Intelligent Agents is mutually following a relevant
aim; to assist in the consolidation of an open distributed
environment, even though a different perception. On the one
hand, Grid has focused on the development of an
interoperable infrastructure within dynamic VOs. On the

other hand, Agents have focused on the realization of
methods and techniques for autonomous acting members
within uncertain and flexible domains. Motivated by the
convergence of interests, we considering the need for
dynamic ability of VO members for achieving self-
sufficiency, and we suggest that an autonomous solution of
individuals may be a step forward to an open grid
infrastructure. The mean to achieve self-sufficiency is the
mobile agents’ paradigm; with the ability to act in response
to a member’s requirements whilst also learning from their
operational environment [6].

Given this background, the work herein addresses a
notable case, namely how Intelligent Agents may assist the
resource discovery process within an uncertain Grid
environment. Notable, the view here is to present the design
and the functionality of a Grid middleware which is
transparent to the VO members by providing them a
proactive and reactive attitude. The model appreciates that
the middleware design is based upon the Mobile Agents
notion which allows software and data to be migrated from
one member to another. Eventually, the mobility intelligence
of the members will be supportive to the resource discovery
phase. By performing migration of a members’ internal
knowledge contained within the metadata snapshot profile to
any interacted VO node we aim to periodically update the
awareness of members about their acting area.

In the following sections we present the motivation of the
proposed study (Section II) and the related works (Section
III). After, we discuss the methodology and the design
strategy of the proposed middleware as well as the
Foundation for Intelligent Physical Agents (FIPA) standard
[9] (Section IV, V). The rest of the paper is organised as
follows. First, we present the functionality of the migration
mobile agents (Section VI). Then, we conclude our study by
presenting an experimental study and results from the
performance of the real time environment (Section VII). At
last we conclude our work by discussing the future work part
and the related challenges (Section VIII).

II. MOTIVATION
The study herein extends the work presented in [6], in

which the resource discovery process is based on an ad hoc
strategy. More particularly, each participant (node) acts as an

2011 Workshops of International Conference on Advanced Information Networking and Applications

978-0-7695-4338-3/11 $26.00 © 2011 IEEE

DOI 10.1109/WAINA.2011.133

135

individual, detached from any centralized topologies
articulated by the VOs. The method is extended to an inter-
collaborative model wherein discovery is derived from data
extracted from a member metadata snapshot profile. The
primary challenging goal in building ad hoc Grid is
supplying each Grid member with specific directions for
continuously maintaining information related to each
community participant [5, 6]. Such information is stored at
each VO member public profile and is available for
advertising on the resource discovery process. To define
these models it is essential to share a common understanding
of the structure among community members. Thus, we are
focused and address the requirements that need to be
announced and met from each VO participant in order to
have a successful interaction. However, due to the huge
number of different prerequisites which may be posed by the
VOs members, we propose that it is essential to analyse and
characterise the minimum requirements. That information
can be constructed within the metadata snapshot profile in a
generic and rational sequence. More specifically, we put
forward a solution of structuring the profile as a four layer
arrangement as described in [6] which contains policies and
trust issues management (1st Layer), domain knowledge
coupling (2nd Layer) and finally physical resources (3rd
Layer) and times constraints (4th Layer) announcements.

In the same direction, internal knowledge and capabilities
may be expressed in the form of intelligent agents thus
providing a more autonomous solution of inter-
communicating members [5, 6, 8]. Based on that fact we
suggest an interoperable mobility agent model that performs
migration to any interacting VO member and by travelling
within each domain allows the discovery of resources
dynamically [6, 7]. The originality of our approach is the
mobility mechanism based on travelling and migration of
software which utilizes the metadata snapshot profile and
stores useful information during the route to each visited
individual (node). Moreover, we suggest that resource
discovery is a systematic and continually updating process
that occurs directly within a VO. Finally, the planned
solution includes an iterated route of travelling in which
internal capabilities and knowledge are spread across the
VO. However, due to the large number of inter-connected
nodes resource discovery mechanism requires an effective
and efficient amount of time that we call interval time.
Consequently, we also consider this parameter in our
middleware design.

III. RELATED WORKS
The dynamic ability of agents and the heterogeneous

nature of grid make resource discovery a challenging issue.
A number of authors describe the applicability of autonomic
agents in grid environments [9,10] by suggesting that the
grid needs agents as they form key components for a
successful interoperable infrastructure. More specifically,
authors in [11] suggest that software agents are programs
that act on behalf of people and can accomplish a task by
acting independently of the supervision of the user. By
providing the ability to transport themselves between
different systems, they can carry internal information which

was obtained by each visited member. Finally their proactive
and reactive nature makes them an ideal choice for a large
distributed environment [12]. Within the scope of resource
discovery, [13] proposes that various approaches exist for
achieving discovery in grid environments such as the Query
based and the Agent based approach. The Query based
approach which is the most commonly used allows the
resource information to be queried for availability.
Conversely, in the Agent based approach agents can
passively monitor and distribute information periodically or
in response to another agent. The major difference between
the aforementioned methods is that an agent is acting on its
own decisions by using their internal logic in conjunction
with the Query based approach which resides within a fixed
query engine. Related works have utilized the agent
framework to achieve the resource discovery of interoperable
nodes. In [14] a web service agent has been proposed to
simplify an interoperable model in which legacy web service
components may have access to the agent system, thus
encouraging interoperation. On the other hand [14] suggests
that resource discovery is driven by autonomous multi-
agents of the semantic grid and a standard interoperable web
service has been addressed to some degree. Finally, the
authors of [4] propose a grid service mobility integration of
agents that enables the combination of the characteristics and
the functionality provided by the agent paradigm, with the
standardization provided for grid services. In the same
direction the authors of [13] recommend that current agent
based systems are immature and few truly agent-based
systems have been developed, e.g. the Foundation for
Intelligent Agents Framework (FIPA) [9].

IV. THE MIDDLEWARE DESIGN
As discussed previously FIPA provides a standardization

agent model for an interoperable environment. An
integration mechanism of this consortium is the Java Agent
Development Framework (JADE). Originally, JADE aimed
at developing multi-agents systems and applications
conforming to FIPA standards for intelligent agents [2].
JADE has been fully coded in Java and was the
programming language of choice because of its many
attractive features, mainly geared towards object-oriented
programming in distributed heterogeneous environments.
Thus, in this chapter we describe the design of the proposed
middleware which creates mobile agents for achieving
resource discovery in distributed environments.

More specifically, each node contains a JADE
middleware which creates two agent platforms, the server
platform service, and the client platform service. On the one
hand, the server which is selected randomly is responsible
for creating an agent for performing migration to interacted
members by utilizing the metadata snapshot profile
information and specifically the IP addresses of the known
members. That information (IP addresses) is stored within
the snapshot profile and is subject to the agent intelligence
for collecting and updating after a successful route. The
agent server creates a service container which called main
container and it is the one that implements the mobile agent.
The main container functionality is to first access the

136

snapshot profile with the IP addresses of the well known
members and starts the trip by moving the entire code to the
first member of the list. Also, the main-container collects the
physical resources including operating system architecture,
total memory, free memory, free physical resource memory,
total physical resource memory, amount of free swap space
and total amount of free swap space of the server node.
Finally the migration agent starts the trip and visits the first
member in the list for requesting information about IP
addresses and physical resource information.

On the other hand, the client platform creates an agent
container service capable of generating an agent for
receiving and sending internal knowledge to the migration
agent coming from the server. More specifically, the client
container creates an agent waiting for a stimulus from the
server agent. Its functionality is to itinerary waiting for a
Server message aiming to collect the IP addresses from the
snapshot file as well as the physical resources of the client
which are structured dynamically. As a result, when the
migration agent visits the client, both exchange information
on the subject of the IP addresses as also the physical
resources. After a successful interaction the migration agent
leaves the first client node and migrates directly to the
second node without returning back to the starting point. The
same sequence of actions happens in the next nodes and the
procedure continues. Finally, when the migration agent visits
the last node of the list it will return back to the starting point
which is actually the creator of the migration agent service.

V. THE AGENT SERVICE SPECIFICATION
In most today’s agent systems, migration of agents

requires flexibility and heterogeneity in the agent platform
that creates the agent. In the first case of the interacting
agents the intra-platform functionality offers a more
centralized topology of agents. More specifically, a member
is selected as the host and creates a platform referred to
specific agent service. Members belonging to the same
domain are aware of that platform and they generate sub-
platforms which refer to the previously created host
platform. On the other hand, inter-platform agents offer a
decentralized model which creates platforms dynamically
for each member without having knowledge about the other
members’ platform settings. In such environments each
domain participant contains a different platform which is
created locally and generates an agent. Agent functionality
involves waiting for requests from other agent platforms in
order to exchange internal knowledge. In other words, any
of the agents are capable of performing communication
directly so a new service can be created dynamically.

In this study the mobile agent strategy is based upon the
FIPA specification. The middleware is based on the Java
Agent Development Framework (JADE) [2], which is
software implemented in Java and simplifies the
implementation of multi-agents systems. More specifically,
each VO member contains the JADE middleware which is
capable of creating mobile agents with the ability to behave
as migration agents to any interacting members within the

same or different VO. Furthermore, we assume that
members of VOs contain the middleware for creating
mobile agents. The members’ platform acts as the
middleware in which agent containers can be created, so
that inter-platform behaviour offers a decentralized model of
interacting members. It is fundamental that each mobile
agent consists of three parts, the code, state and data. The
code is the part of the agent that migrates to a different
platform, the state is the execution environment and the
data is that aspect that consists of members’ variables such
as the internal knowledge.

Our sample consists of three members that are able to
communicate with each other. A node is selected to be the
host, which in our case will be the creator of the agent
service. The remaining nodes are capable of creating a sub-
platform specification which refers to the Host member
platform. In other words, sub-platforms accept
communication from an agent “Agent A”, while an internal
agent waits for the connection. The agent starting from the
host platform traverses a route to each node to collect and
update the internal information of visited members, and then
returns back to the host. The service can be repeated by any
of other members, however each time other members should
be alerted of the service creator address. The
aforementioned scheme illustrates the inter-platform
communication model; in which agents are created
dynamically by the inter-platform utility service. The
mobile agent migrates to different platforms and exchanges
information with local agents. This solution predisposes the
need for compatibility between different platforms and
security issues needs to be resolved by the agents.
Considering inter-platform necessarily, the implementation
of the middleware is achieved by using a specific add-on
feature of JADE for developing inter-platform services [2].

VI. THE MIDDLEWARE FUNCTIONALITY
In this section we present the functionality of the

middleware service by discussing the server and client
features.

A. The server
As mentioned in before the middleware is designed to

behave either as a server or as a client. The server part
implements the mobile agent class which creates the
migration behaviours of the agent. More specifically the
middleware implements five cases as follows:

Case 1: The class collects the addresses of the trusted
members by utilizing the metadata snapshot file which
contains the IP addresses.

Case 2: A mobile agent instance sends an ACL message
to the client agent.

Case 3: The server waits a response from the client agent.
In any case the migration agent moves to the next node by
creating an itinerary of addresses based on the metadata
snapshot profile data.

137

Case 4: The migration agent assigns an id to each newly
discovered host which it’s actually the IP addresses of the
members.

Case 5: The migration agent itinerary is finished and the
new addresses are stored within the metadata snapshot
profile.

Hence, during the route the migration agent moves from
member to member and continues its execution from the
current case point. Notable, the middleware implements a
strong migration mechanism which means that agent
continues execution at the new resource, in contrast with the
weak migration in which execution starts from the
beginning.

B. The client
The agent client creates a platform for initializing the

agent cyclic behaviour. More specifically, the internal agent
of the node initializes the behaviour for receiving and
sending information from the travelling agent. Furthermore
the code implements three cases as follows:

Case 1: The agent gets the IP address and the physical
resources of the node.

Case 2: The agent is ready for receiving a stimulus
connection from the travelling agent. In this case the client
goes to a sleep mode until without overloading the client
physical resources.

Case 3: In the case of a forthcoming ACL message from
the server the client collects the metadata snapshot profile
data and interacts with the migration agent. The addresses
and the physical resources are stored within a vector of the
forthcoming mobile agent.

So, after a successful interaction the agent status is idle
(sleep) and it is waiting for connection from any mobile
agent. It should be mentioned that the mobility service
supports the inter-platform configuration which allows
information exchanging from different migration agents.

VII. THE JADE MIDDLEWARE ARCHITECTURE
As presented in aforementioned sections the JADE

middleware creates a server and a client component
respectively. Both functionalities offer novel intelligent
features, however the server part is principally the concept
behind the mobility of the middleware. So, here we discuss
the architecture of the server part which is mainly based
upon four different components namely as follows:

1. The Main Controller Agent
The main controller it is actually a Java based application

which:
a) Initializes the JADE environment
b) Initializes the Controller Agent Component

2. The Controller Agent
The controller agent is responsible for collecting the IP

addresses from the metadata snapshot profile of the Server.
Consequently, its functionality contains the following
procedures:

a) Initializes and sends a message to the receiver
message agent component which contains the number of the
agents that are about to be created from the controller agent.

It is noteworthe to mentioned that the server part could be
able to generate several mobile agents at the same time.

b) Through an iterated loop creates the agents with
respect to a simple function. More specifically, the function
is defined as: Agent number = Agent number * 0,1. So, for a
sample of 100 nodes the controller agent will be able to
create 10 agents which are about to be migrated as discussed
in the next step.

3. The Mobile Agent
The mobile agent component is initialized from the agent

controller and accepts as the main parameter a vector with
the hosts which is about to visit. The functionality contains
the setup() and action () methods as follows:

a) The setup() method
Initializes variables and creates a new behaviour which

will be iterated in a cyclic mode within the method action()
b) The action() method
The action() method contains a state variable that

accepts the values 0 and 1. While the state is 0 moves it self
to the next IP address of the vector. In the case that state is 1
moves it self to the first IP which is the starting point, which
means that the visiting route is completed. The important
point of the agent intelligence for performing several
behaviours is controlled within the action() method. So, in
this part we initialize the before and after behaviour of an
agent visit. In both situations the JADE middleware creates
two behaviours that are about to be executed at a specific
time. More specifically the behaviours are:

� The BeforeMove() behaviour
On the one hand, the BeforeMove() is responsible for

performing actions prior to an agent starting move. In our
middleware the BeforeMove() displays information
messages.

� The AfterMove() behaviour
On the other hand, the AfterMove() behaviour is

executed when the agent leave the first node. Its functionality
includes the following actions:

a) Sends a message to the client agent and requests for
new IPs and new physical resource data.

b) Waits within an iterated loop for a response from the
client agent for a specific time-out value.

c) Sends the information which remotely collected
from the client agent to the Receiver Message Agent. In the
case of a time-out, sends a failure connection message.

d) Finally, when the entire procedure is finished the
agent delete it self and release the client. Then the client
goes to a non overloaded sleepy mode.

4. The Receiver Message Agent
The receiver message agent functionality is to act as the

message bus of the middleware. More specifically the
component accepts a message from the controller agent only
one time per route. The message contains the names of the
newly created client agents from the controller agent.
Following to that, accepts several messages from the mobile

138

agents which contain the old and newly found IPs as well as
physical resource information. Figure 1 illustrates the JADE
server middleware architecture.

Figure 1. The Server Middleware Architecture

VIII. EXPERIMENTS AND RESULTS
In this section we present a real-time environment

experiment of the JADE middleware functionality. More
specifically, we present two experiments and evaluation of
results as follows:

1. In the first evaluation test we describe the resource
discovery between two small scale VOS with total size of ten
nodes. It should be mentioned that VO1 IP addresses are
those starting with 192.168 and VO2 addresses starting with
195.168. We have installed the JADE middleware to each of
the ten nodes and the agent metadata snapshot profile. So, in
this experiment, we have selected randomly that Node1 will
be the server machine which starts the resource discovery
process. The aim here is to achieve resource discovery of the
VO2 nodes. For that reason we assume that node1 and node5
are Critical Friends Community (CFC) members as
discussed in [3]. More specifically CFC promotes an inter-
collaborated threshold delivery service among Virtual
Organisation (VO) members (nodes). Thus node5 will be
able to redirect the process to VO2 nodes which are currently
unknown to node1.

Starting from the Node1 (the server) a travelling agent is
initiated which access the snapshot profile and collects the
addresses stored within the profile. In out sample the
travelling agent first communicates with node2 (the first
client in the list). More specifically, the mobile agent
stimulates a connection with the client agent which offers an
inter-platform utility service. After that, we assume that a
security interaction occurs in which both members exchange
security certificates. It should be mentioned that the JADE
runtime environment contains security add-on validation
features, however we currently assume that extra VO
authorization measures may occur. Then, the travelling agent
of Node1 requests the metadata snapshot addresses of the
Node2. The last one sends the addresses to the Node1 agent
and both members update their agent property files. Then the
mobile agent moves to the next node3 and so on. Lastly,
agent visits the node5 and a new address is discovered. The

new data are collected and the agent continues the trip. As
node5 is the last node in the list it returns back to the starting
point and updates the data of node1. In the next trip Node1
mobile agent will visit node2, node3, node4, node5 and node10
respectively. So starting from node2, the travelling agent
updates the profile and stores the new address of node10. The
procedure continues in the same order for the next node3.
Finally the agent will migrate to the interconnected member
node10 and after a successful interaction the new addresses of
(node2, node3, node4 and node5) are stored in the profile.
Also the addresses of node6, node7, node8 and node9 are
collected and returned back to the starting point. So, after a
number of iterations of the travelling agent both domains
VO1 and VO2 will be able to extend their knowledge about
the addresses of interconnected members. It should be
mentioned that after a successful interaction mobile and
client agents exchange physical resources. We have run
some experiments in our testbed, and we have discovered
that a mobile agent needs approximately 2,25 seconds to
move from machine to machine. So the diagram 1 presents
the interval times from the agent trip. As we can see the
highest interval time is 2,34 seconds and the total interval
time of a complete route is 13,14 seconds.

DIAGRAM I. VO1 AGENTS PERFORMANCE

More specifically, as we can see from the diagram the

highest interval time is 2,34 seconds. In this case the total
interval time is considered as follows:

Trip 1: The first route as described in diagram 1 in which
the agent visits node1 to node5 and node10.

Trip 2: During the second route the agent visits node1 to
node10.

After the discovery of the new members based upon the
CFC behavior of node5 and node8 the new times of the
agents are presented in diagram 2.

DIAGRAM II. VO1 AND VO2 AGENTS PERFORMANCE

Agent 1 Trip

Node 1; 2,01

Node 2; 2,12

Node 3; 2,34

Node 4; 2,15
Node 5; 2,21

Node 10; 2,09

1,95

2,05

2,15

2,25

2,35

2,45

Agent 1 2,01 2,12 2,34 2,15 2,21 2,09

Node 1 Node 2 Node 3 Node 4 Node 5 Node 10

Agent 1 Trip

Node 1; 2,03

Node 2; 2,11

Node 3; 2,3

Node 4; 2,18Node 5; 2,18
Node 6; 2,23Node 7; 2,2

Node 8; 2

Node 9; 2,31

Node 10; 2,1

1,95

2,05

2,15

2,25

2,35

2,45

Agent 1 2,03 2,11 2,3 2,18 2,18 2,23 2,2 2 2,31 2,1

Node
1

Node
2

Node
3

Node
4

Node
5

Node
6

Node
7

Node
8

Node
9

Node
10

139

Therefore, after the evaluation of the results we conclude
that the total interval time of the route is 34, 56 second. It is
obviously that if we consider a huge number of nodes the
total interval time will be massive. For that reason we have
employed a decomposition model of agents as described in
[6]. In this model we avoid to enlarge the nodes metadata
snapshot profile by clustering the nodes and assigning agents
to specific groups of nodes.

2. In this section we have run a test within an
environment of 200 nodes. For that reason we have decided
to generate 20 agents according to the function described in
Section VII. Each one of those agents will be capable of
performing migration to ten nodes. More specifically agent1
will be moved to node1 to node10, agent 2 will be moved to
node11 to node20 etc. Thus, diagram 3 illustrates the times
of the agent trip. As we can see from the diagram the highest
visit time is for agent 4, which requires 2,4 seconds to visit
node31. So, in experiment 1 the highest agent time for a
complete trip is 34,56, which is identical to experiment 2
agent 4 trip of 34,62 seconds. It is obvious that the average
interval time for discovery among 200 nodes it is quite
similar, in other words by decomposing VOs to smaller parts
we can achieve a quality threshold optimization of the
interval time. However, a delay time of 4 seconds occurs
when the agents are arriving back to the server. It also should
be mentioned that in the previous sample of 200 nodes we
have collected 50 new addresses (extracted from the
snapshot profile of each member), so in the next route we
will generate 25 agents and the total interval will be identical
to the first example of 10 nodes discovery. So, the main
contribution of our work is undoubtedly the fact that the
discovery time of 1 agent for 10 nodes is identical to the
discovery of 20 agents for 200 nodes. Subsequently, the
main endeavour is to empower the resource discovery by
decomposing VOs to smaller parts.

IX. CONCLUSION AND FURTHER WORK
In the work herein we consider the need for dynamic

ability of VO members, so we suggest that an autonomous
solution of individuals may be a step forward to an open grid
infrastructure. The above sections have shown that a
convenient way to achieve self-sufficiency of Grid nodes is
the mobile agents’ paradigm; with the ability to act in
response to a member’s requirements whilst also learning
from their operational environment. The model provides an
interoperable resource discovery concept by introducing a
novel functionality; in which several members of different
VOs are capable of communicating with each other in order
to extend VO boundaries. Nevertheless, by decomposing the
VO into smaller parts we can achieve a significant low
interval time.

X. REFERENCES
[1] I. Foster, C, Kesselman, S. Tuecke, “The Anatomy of the Grid:

Enabling Scalable Virtual Organizations”, International Journal of
High Performance Computing Applications 15(3), 200, 2001.

[2] F., Bellifemine, G., Caire, A., Poggi, G., Rimassa, “JADE: A
software framework for developing multi-agent applications”,
Lecture Notes in Computer Science, Intelligent Agents VII Agent

Theories Architectures and Languages, pp. 42-47, 2001, Springer
Berlin / Heidelberg.

[3] Y., Huang, N., Bessis, A., Brocco, S., Sotiriadis, M.,Courant, P.,
Kuonen, B. Hisbrunner, “Towards an integrated vision across inter-
cooperative grid virtual organizations”. Future Generation
Information Technology (FGIT 2009), pp.120-128, Springer LNCS,
Jeju island, Korea.

[4] L., Moreau, A., Avila-Rosas, V., Dialani, S., Miles, X., Liu,“ Agents
for the Grid: A Comparison with Web Services (part II: Service
Discovery)”, Proceedings of Workshop on Challenges in Open Agent
Systems, Italy, pp. 52-56, 2002.

[5] S., Sotiriadis, N., Bessis, P., Sant, C., Maple. (2010). “A resource
discovery architecture of loosely coupled grid inter-cooperated
Virtual Organisations using mobile agents and neural networks”,
Fifth International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing (3PGCIC 2010), Fukuoka Japan, 4th-6th
November 2010 (to appear).

[6] S., Sotiriadis N., Bessis Y., Huang P., Sant C., Maple, “Defining
minimum requirements of inter-collaborated nodes by measuring the
heaviness of node interactions”. International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS 2010),
IEEE, Krakow, Poland, February 2010.

[7] S., Sotiriadis N., Bessis Y., Huang P., Sant C., Maple, “Towards to
decentralized grid agent models for continuous resource discovery of
interoperable grid Virtual Organizations”, The third international
conference of Applications and Digital information and Web
technologies (ICADIWT), Instabul, Turkey, July 2010.

[8] S., Sotiriadis N., Bessis P., Sant C., Maple, “Encoding minimum
requirements of ad hoc inter-connected grid virtual organisations
using a genetic algorithm infrastructure”, IADIS multi conference on
computer science and information Systems (MCCSIS 2010),
Freiburg, Germany, July 2010.

[9] The Foundation for Intelligent Physical Agents (FIPA),
“http://www.fipa.org”.

[10] I., Foster, N.R., Jennings, C. and Kesselman, “Brain meets brawn:
why Grid and agents need each other”, In: 3rd International
Conference on Autonomous Agents and Multi-Agent Systems, 2004,
New York, USA. pp. 8-15, 2004.

[11] P. D., Cox, Y., Al-Nashif, S., Hariri, “Application of Autonomic
Agents for Global Information Grid Management and Security”, in:
Summer Computer Simulation Conference 2007 (SCSC 2007), San
Diego, USA, 2007.

[12] K.G., Zerfiridis, and H.D., Karatza, “Mobile Agents as a Middleware
for Data Dissemination”. Neural, Parallel & Scientific Computations.
Dynamic Publishers, Vol. 10, No. 3, pp. 313 323, Atlanta, September
2002.

[13] K.G., Zerfiridis, and H.D., Karatza, “File Distribution Using a Peer-
to-Peer Network - A Simulation Study”. Journal of Systems and
Software, Elsevier, Vol 73/1 pp. 31-44, 2004.

[14] T.E., Athanaileas, N.D., Tselikas, G. V., Tsoulos, D. I., Kaklamani,
“An agent-based framework for integrating mobility into grid
services”, Proceedings of the 1st international conference on
MOBILe Wireless MiddleWARE, Operating Systems, and
Applications, Innsburck, Austria, 2008.

140

